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Abstract—A/B testing is one of the most successful applications
of statistical theory in the Internet age. A crucial problem of
Null Hypothesis Statistical Testing (NHST), the backbone of A/B
testing methodology, is that experimenters are not allowed to
continuously monitor the results and make decisions in real
time. Many people see this restriction as a setback against the
trend in the technology toward real time data analytics. Recently,
Bayesian Hypothesis Testing, which intuitively is more suitable
for real time decision making, attracted growing interest as a
viable alternative to NHST. While corrections of NHST for the
continuous monitoring setting are well established in the existing
literature and known in A/B testing community, the debate over
the issue of whether continuous monitoring is a proper practice
in Bayesian testing exists among both academic researchers and
general practitioners. In this paper, we formally prove the validity
of Bayesian testing under proper stopping rules, and illustrate the
theoretical results with concrete simulation illustrations. We point
out common bad practices where stopping rules are not proper,
and discuss how priors can be learned objectively. General
guidelines for researchers and practitioners are also provided.

Category and Subject Descriptors: G.3 [Probability and
Statistics]: Statistical Computing

Keywords: A/B testing, controlled experiments, Bayes factor,
optional stopping, continuous monitoring

I. INTRODUCTION

Many online service companies nowadays have been using
online controlled experiments, a.k.a. A/B Testing, as a sci-
entifically grounded way to evaluate changes and comparing
different alternatives. A/B testing plays a leading role in
establishing the mantra of data driven decision making, and is
one of the basic pillars in Data Science.

Most of A/B tests are conducted using the statistical theory
of frequentist Null Hypothesis Statistical Testing (NHST),
namely t-test or z-test.! Experimenters using NHST summa-
rize the test result in a p-value and reject the null hypothesis
Hy when the p-value is less than a prescribed significance
level o (often 0.05). The interpretation is that assuming all
model assumptions are correct, doing so we can control the
Type-I error, i.e. the probability of making a false rejection
when H) is true, to be no greater than a.

Recently, interests in using Bayesian model comparison for
two sample hypothesis testing are growing [8; 21; 15]. The
type of statistical interpretations we make from Bayesian tests

IFor this paper, we assume readers are already familiar with the concepts of
Null Hypothesis Statistical Testing (NHST) in controlled experiments. Readers
new to these concepts and A/B testing should refer to references such as
Kohavi et al. [17].

is fundamentally different from NHST. Under the Bayesian
framework, we assume there is a prior probability P(Hy) for
H; (the alternative) to be true, and similarly P(H,) for Hy
to be true. The ratio between the two is called the prior odds.
After collecting data from an experiment, we update prior odds
into posterior odds (abbreviated as PostOdds) using the Bayes
Rule:

PostOdds := DP(H,| Data) _ PUh) P(Data|H1), (1)

P(Hy|Data)  P(Hp) P(Data|Hp)

which is commonly referred as

Posterior Odds = Prior Odds x Bayes Factor.

Note that the Bayes Factor (BF) is the likelihood ratio of
observing the data between H; and Hy. From the posterior
odds, it is straightforward to calculate the posterior probabil-
ities P(H;|Data) and P(Hp|Data). Moreover we have
P(Hy|PostOdds)
P(Hy|PostOdds)

and therefore

P(H,|PostOdds) = PostOdds/(PostOdds +1).  (3)

= PostOdds, 2)

Equation (2) (or its equivalent form (3)) has the following
interpretation: when observing a posterior odds K, rejecting
H; will expose us to a risk of a false rejection/discovery
with probability P(Hy|Data) = 1/(K + 1). In other words,
the whole experiment result can be summarized by posterior
odds.?

In this paper we are interested in a common practice called
continuous monitoring or optional stopping. This practice is
best described as the following Example.

Example 1 (Optional Stopping):

We observe data sequentially and at any time we can con-
duct statistical analysis on the data already observed. Let
t = 1,...,N be all the interim check-points that we can
take a peek at our A/B test results.> For any given metric
M, let R; be its test result at check-point t. We define an
event S; that is observed at time ¢ and stop the experiment at
the first t such that the event happens (R; € S;) and return
result R;, e.g. when we deem the result is “significant” or
“conclusive”. Typically, the event S; is defined as p-value < «
or P(Hy|Data) < r. If this event didn’t happen at t = N

2(2) and (3) is a special case of Theorem 1 proven later.
3A test result could be something like a test statistic, p-value or Bayes
Factor/posterior. We use this vague notion when the detail is not important.



we return test result Ry. A general version involves infinite
horizon.

Pitfalls of continuous monitoring under NHST framework
have been documented in various publications[1; 24; 13].
We say the interpretation of the result is unchanged with
continuous monitoring if the validity of the interpretation holds
regardless of whether continuous monitoring is used. NHST is
valid for fixed horizon test. But it is known to underestimate
Type-I error when continuous monitoring is used. To quickly
see why, if experimenters are allowed to stop the first time p-
value is less than 5%, we will only reject more often, but no
less comparing to a fixed horizon design, because the event of
rejection in a fixed horizon design, i.e. only reject at time N,
is strictly a subset of the event of rejection in the continuously
monitoring design. As a result, if the Type-I error in the
fixed horizon design is 5%, the Type-I error with continuous
monitoring will in general exceed 5%. An application of the
law of iterated logarithm shows when incoming data are i.i.d.
continuous monitoring will inflate Type-I error to 100% when
the horizon N goes to infinity, see Siegmund [24]. Johari et al.
[13] provided simulation results showing that the inflation of
Type-I error is significant and could be typically above 50%
or more.

In the Bayesian framework with continuous monitoring,
posterior is still defined as in (1). However, the key problem
is that, when a data-adaptive stopping rule is applied, it is
unclear how to compute the Bayes Factor %ﬁ}% because
the probability space is on stochastic processes without a fixed
length. This BF is easy to calculate if we are allowed to ignore
the random stopping time and treat it as fixed. The main result
of this paper justifies this practice.

Theorem 1: Let X, be all the observed data up to time ¢ and
BF; be the Bayes Factor defined as % and posterior
odds PostOdds; defined as in (1) with a pre-defined, known
prior odds P(Hy)/P(Hy). Let T be any stopping time defined
by a proper stopping rule. That is, a mechanism for deciding
whether to continue or stop on the basis of only the present and
past events and T is finite almost surely. Then the interpretation
of posterior odds remains unchanged with optional stopping
at 7. Specifically, we have

P(H{|PostOdds;) = PostOdds;, /(PostOdds, +1). (4)

Theorem 1 says (3) is correct even when the posterior
is calculated under a fixed horizon model by treating the
random stopping time 7 simply as a fixed time. In other words,
Equation (4) guarantees that the fixed horizon Bayesian test
result remains the same interpretation even with continuous
monitoring, provided that the Bayes Factor (and hence the
posterior odds) are calculated using all available observations
up to the stopping time 7, and the stopping rule is properly
defined to be based on only the present and past events.
In particular, the theorem does not hold if Bayes Factor is
calculated on a selected subset of the observations available
at time ¢, or if the stopping rule peeked ahead into the
future. These requirements are met in all common practices
of continuous monitoring as in Example 1 where the stopping

time is called a “hitting time”. In conclusion, Theorem 1
formally endorsed the practice of continuous monitoring in
the framework of Bayesian Hypothesis Testing. This is in
stark contrast to NHST, where special adjustment has to be
done. Still, practices like “re-analyze the same data using
continuous monitoring after failed to reject using all data” is
not supported by Theorem 1. More bad practices are discussed
later in Section V.

At the time of writing, to authors’ best knowledge there
is still a lack of general agreement on whether continuous
monitoring is a proper practice when Bayes test is used
because there is no concrete theorem or proof like Theorem 1,
more details in Section II. The purpose of this paper is to
provide arguments assessable by practitioners and engineers,
while at the same time provide rigorous proofs for researchers
in A/B testing community as well as related fields. With this
main goal, the contributions of this paper are

1) We formally prove Theorem 1 in Section IV.

2) We adopt a simulation approach as in Rouder [20], to help
readers understand the result and gain intuitions. We also
emphasize what Theorem 1 does not guarantee.

3) For practitioners, we make recommendations on when
and when not to use continuous monitoring. We put
emphases on cases where Theorem 1 does not apply.

4) We discuss the importance of a known prior odds in The-
orem 1 and learning this odds objectively from historical
experiment data.

All model assumptions required in our models are taken as
granted. Although both NHST and Bayesian tests make extra
model assumptions, the latter requires more such as prior and
distribution under H;. In practice many people use subjective
priors or so called non-informative priors. These practices
have been criticized a lot since there are no agreement among
researchers and practitioners on which prior is appropriate.
However, with the existence of rich historical A/B tests data,
we can learn prior objectively from the empirical data. We
discuss this in more detail in Section VII.

The rest of the paper is structured as follows. We review
related work in the next Section. Section III illustrates The-
orem | using a simple simulation setup. Proof of the main
theorem is in Section IV, with intuitive explanations. We
emphasize bad practices where Theorem 1 does not apply in
Section V. More simulation study and discussions about pros
and cons of continuous monitoring are presented in Section VI.
Section VII studies the important practical issue of objective
prior learning. Section VIII concludes the paper with practical
recommendations.

II. RELATED WORK

The need of a different theory to allow continuous monitor-
ing in NHST framework has long been known as the subject
of sequential hypothesis testing [25]. Sequential hypothesis
testing and later on group sequential testing have been widely
used in Clinical Trials [1]. The idea of sequential test was
only recently popularized by Johari et al. [13] in A/B testing
community, by including it as part of the offering of the
commercial A/B testing platform Optimizely. Despite it being



newly introduced to A/B testing community, the theories
behind sequential tests under NHST frameworks are well
known by statisticians and practitioners in related areas such
as clinical trials, psychology, econometrics and other social
sciences.

Bayesian hypothesis testing, on the other hand, is much
less accepted and established than its frequentist counterpart.
This was largely due to the need of prior knowledge that
commonly requires a subjective choice or so called “non-
informative” priors which also lacks justification. Putting the
issue of choosing a prior aside, many Bayesians have argued
that Bayesian reasoning should be immune to stopping rule.
For example, Dawid [6] brought up the notion of conditional
independence and argued that posterior based on stopping time
shouldn’t alter likelihood ratios. This issue is also discussed
in Berger and Berry [3] and later Berger and Bayarri [2]
referred to the idea as the “stopping rule principle” and said
“once the data have been obtained, the reasons for stopping
experimentation should have no bearing on the evidence
reported about unknown model parameters.” Although the
idea is well received by leading Bayesians, there are still a
lot of debates going on among researchers and practitioners
on whether Bayesian testing and more generally Bayesian
analysis is adjustment-free when optional stopping is applied.
John K. Kruschke made the point that Bayesian testing can
be biased under optional stopping in 2013 [18], in which he
used simulation to show Type-I error could be higher when
using stopping rule based on Bayes Factor. Andrew Gelman
claimed that optional stopping “is Kosher” in Bayesian anal-
ysis in 2014 [12]. This debate is also still heated in Psychon.
Bull. Rev., a journal where Bayesian hypothesis testing is
relatively well received. In a 2014 paper Rouder [20] used
simulation to support the case of Bayesian test with optional
stopping, and to counter criticisms from Erica et al. [11] and
Sanborn and Hills [22], both published also in 2014. Recently
Schonbrodt [23] also supports optional stopping for Bayesian
test with discussions on the issue of parameter estimation
bias. However, no proof in a concrete setting is provided
in the literature beyond simulation studies. A lot of dispute
mentioned above are due to misunderstanding of what kind
of promises are Bayesian tests making and should still keep
with optional stopping. This paper set out to settle this issue
with a rigorous theorem. We believe the lack of a general
agreement on this issue even in mid 2010s is a clear sign
that this is still a big problem for researchers and practitioners
in various areas. This is especially the case for A/B testing
community because 1) data are always received in near real
time in a sequential fashion, 2) the technology enables and
even encourages experimenters to frequently check out the
test results.

III. BAYESIAN PROMISES IN FIXED HORIZON TEST

Instead of explaining and proving Theorem 1 right away,
we explain what are we going to prove in Theorem 1 for the
basic fixed horizon test before we go into optional stopping.
This section serves two purposes. First, a big part of the

debates about whether Bayesian test is biased with continuous
monitoring is due to wrong interpretations of the Bayesian
test result itself, and using frequentist measurements such
as Type-I error to evaluate a Bayesian test result. This is
largely due to most researchers, especially statisticians, are
trained with frequentist statistics and methodologies. A correct
interpretation of Bayesian posterior odds and Bayes Factor
is a prerequisite for readers to understand and appreciate
Theorem 1 and rest of the paper. To this end, for most
data scientists and engineers, we found replicable simulation
results is more tangible and concrete than probability formulas.
Secondly, through the simulation results, we hope readers will
glimpse some intuitions on why Theorem 1 is indeed expected
even with optional stopping. Simulation setup in this section
follows prior work of Rouder [20].

Recall Posterior Odds = Prior Odds x Bayes Factor. Prior
odds is considered known and is independent of the observa-
tions collected for the test. Prior odds is easy to interpret and
interpretation of Bayes Factor, hence the posterior odds is the
essence of a Bayesian test. Without loss of generality, from
now on we will assume a prior odds of 1:1 and leave the
problem of how to objectively pick prior odds in Section VII.
In this case Posterior Odds and Bayes Factor are the same.
Readers can treat them as interchangeable in this paper.

We consider a simple problem of testing a normal mean. We
observe N i.i.d. observations X;,7 = 1,..., N from a normal
distribution N (p, 1) with unknown mean p. ¢ = 0 under the
null hypothesis Hy, and 1 = § under the alternative hypothesis
H,. Equivalently, sample mean X is the sufficient statistics
and it has distribution N(0,1/N) under Hy and N(d,1/N)
under H;. Note that this is even simpler than a A/B test
because there is only one group. For two sample A/B test we
replace X by A = X1 — X, e.g. difference of two sample
means, and the test is essentially the same as one sample test.

For details see Section VII.
The Bayes Factor is

_ exp(f(Y: 8)%/(2/N)) = exp (ﬁg(gf — 5)) )
exp(—(X)?/(2/N)) 2

Conditioning on observing a X, if we plug it into Equation 5
and get a number K, what does it mean? To illustrate this, we
simulate 100,000 runs and each run we simulate N = 100
observations X;,72 = 1,...,N. Since we assume prior odds
1:1, we simulate 50,000 runs under H;, where X; ~ N (4, 1)
and the other 50,000 runs under Hy where X; ~ N(0,1).
At the end of each run, we calculate Bayes Factor based on
Equation 5. The end result of this simulation is 100, 000 Bayes
Factors, half of them are from H; and half of them from Hj.

We did this simulation for § = 0.2 and N = 100. Figure 1
shows histograms of those Bayes Factors in log scale, grouped
by the ground truth models Hy and H;. Bayes Factors from
H, are shown on top and those from H, are shown at the
bottom. What does it mean if we observe a Bayes Factor of
2.1? On Figure 1, we first group Bayes Factors close to 2.1
together in to the same bin. There are about 4,000 runs from
H; (height of the red bar) that produced a Bayes Factor close

P(X|Hy)
P(X|Ho)
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Fig. 1. Histograms of Bayes Factor simulated from both models. For each bin,
the number on top are the ratio of simulated Bayes Factors from alternative
to those from null.

to 2.1 (among 50,000 simulation runs), while around 2,000
(height of the blue bar) are from H; (among 50, 000 simulation
runs). The actual ratio of those from H; to Hy is shown on
top of the plot and is 2.1, which is the same as the Bayes
Factor 2.1 we started with. In fact, if you go through each
bin carefully in Figure 1, you will find the number on the
x-axis, which represents Bayes Factor value calculated from
Equation 5 and grouped into each bin, are very close to the
actual observed count ratio of those from H; (top red) to those
from Hy(bottom green), except those at the far tail on both
sides. Is this a coincidence? Of course not. When observed a
Bayes Factor of K, we know both model Hy and H; could
result in such a Bayes Factor. This simulation we did let us
replay the data generation process and observe how likely it
is for H; to generate such a Bayes Factor and how likely for
Hy respectively, which are represented, after binning similar
Bayes Factors together, by the height of the top and bottom
histograms. Our interest is the odds of this Bayes Factor being
from H; to Hy, which is the ratio of heights between the red
bar and the green bar. We will expect the observed ratio to be
close to the true underlying odds, within some small expected
error due to 1) simulation randomness and 2) discretization
used in binning similar Bayes Factor together. The error from
simulation randomness is smaller for those center bins, i.e.
bins where more Bayes Factors are observed from 100, 000
simulation runs, and are larger for those at the tails.* What
we observed so far can be summarized as: For each posterior
odds bin

True underlying odds = Observed ratio
= Bayes Factor calculated from Equation 5.
This simulation illustrated two things:

1) Bayes Factor can be conceptually “materialized” as the
ratio of the bar heights from the H; histogram and H

4Some bins on the two tails are either showing an observed ratio of 0 or
Inf, for the obvious reason.

histogram. An observed Bayes Factor of K means it is
K times more likely to be generated from H; than H.

2) For the fixed horizon case, Equation 5 is the same as the

true odds (at least they must be very close).

Bayesian Promise The above simulation illustrates the
Bayesian Promises: Equation (2) (and (3) as its direct con-
sequence). After we’ve collected all the simulation results,
we summarize each run into a Bayes Factor/posterior odds.
Conditioned on any posterior odds, the observed ratio is an
estimate for LHS of (2), and the posterior odds calculated
from 5 is the RHS of (2). In other words, we have seen from
simulation that without continuous monitoring, a fixed horizon
Bayesian test of H; vs. Hy keeps the Bayesian Promise (2).

What Theorem 1 tells us is that the same Bayesian Promise
is kept when optional stopping is used with a proper stopping
rule. The fixed horizon case is a special case of proper stopping
rule where the stopping time is fixed and independent of data.

IV. PROOF OF MAIN THEOREM
We now prove Theorem 1. Readers who only need intuition
are recommended to skip the proof and jump to Section IV-A.
Both sides of the (4) are random variables depending on
PostOdds.,. It is equivalent to the following:

P(H,|PostOdds, = K)  P(H; and PostOdds, = K)

P(Hy|PostOdds, = K)  P(Hy and PostOdds, = K)
_ P(PostOdds, = K|Hy) _ P(H;)
~ P(PostOdds, = K|Hy) =~ P(Hyp)
for any K where P(PostOdds, = K) > 0. Let K’ = K X
P(Hy)/P(Hy). The event {PostOdds, = K} is equivalent
to {BF, = K'}. The last equality above after rearranging the
prior odds P(Hy)/P(Hy) to the right side becomes
P(BF, = K'|H;)
P(BF, = K| Hy)
Without loss of generality, we only need to prove (6).

We first prove for the fixed horizon case, which is a direct
result of likelihood ratio identity, or change of measure [9].
For any fixed ¢, let Q; = P(:|H;) and P, = P(-|Hp) be
the probability measure under H; and H, respectively for
observations up to ¢, both have a density function with respect
to Lebesgue measure on the real line. Let A be any event
observable at time ¢.> The likelihood ratio identity® ensures

Q:(A) = Ep, (]lA X l@> ;

:K,

=K' (6)

dP;

where dQ,/dP; is the likelihood ratio and 1,4 is the binary
indicator function for event A. Recall Bayes Factor is defined
as the likelihood ratio. Replace dQ;/dP; by BF}, set A =
{BF; = K'} in the above to get

Qt(BFt = KI) = E]pt(]lA) . K/ = K/ . ]Pt(BFt = K/), (7)
which is (6).

5A € F; where F; represents the set of measurable events at time ¢. F;
is called a filtration because Fs C F; for any s < ¢t.

61t is also called change of measure identity because the equation transforms
an expectation under a measure [P into an expectation under another measure
Q. This is a special case of the Radon-Nykodym Theorem in measure theory.



We can generalize this argument for random time 7.
Theorem 1 requires 7 to be a stopping time’ so that the
event {T = t} is observable at time ¢. This is a necessary
requirement to ensure that we can apply the likelihood ratio
identity for the event { BF; = K’ and T = t}(observable at t)
to get

Qt(BFt:K/,T:t):K/XPt(BFt:K/,T:t). (8)

If 7 can only take value from 1 to a maximum horizon
N (experiment stop at N no matter what, which covers all
practical cases), summing up (8) over all ¢ entails

N
P(BF; = K'|Hy) = Y P(BF, = K',7 = t|H)
t=1
N N
=Y QuBF, =K',r=t)=> K'P(BF,=K',r=t)
t=1 t=1

K'P(BF, = K',7 = t|Hy) = K'P(BF, = K'|H,)

I
WE

o~
|
N

which is (6) and the proof is completed. Notice how we
changed BF, = K’ to BF; = K’ once we restrict ourselves
to the set 7 = ¢ in the second and fifth equality. The essence
of the proof is to show
P(BF, = K',7 =t|H;)
P(BF. = K',7 = t|Hy)
for every t < N by applying likelihood ratio identity (8) and
then sum up both numerator and denominator of (9) over ¢ to
recover (6). For potentially unbounded 7, we just need to sum
up to infinity and the result still holds because the sum series
of both numerator and denominator of (9) are finite.
Important Remark. We make the remark that Theorem 1
does not require observation X to be sequential i.i.d. ob-
servations as in earlier simulation examples. All we used in
the proof is the likelihood ratio identity for the whole path
of observations Xy up to t for any t. In a typical A/B test
with user level tracking, users who visit the site multiple
times will provide multiple observations sequentially. Since
there is a strong between-user correlation, when we look at
Xy, which includes all sequential observations (page-views)
from different users, they are not independent. However, at
any given time t, we can always first aggregate X, to the
randomization unit, which is user. Take the metric Revenue
per user as example, X; is the sequence of revenues for each
page-view up to time t¢. For each user, we can sum up revenues
as Yi,i = 1,..., Ny where N; is number of unique users.
We can treat Y;; as i.i.d. when computing likelihoods under
both H; and Hj. For ratio metrics such as Click-Through-
Rate(CTR), Y;; can either be CTR for each user and average
of Y;, is the average CTR over all users — a double average
metric, or Y;; can be a pair (Clicks;, PageViews;;) and
the metric is the sum of clicks over all users divided by
sum of page-views. Delta Method is required to compute
the likelihood for the latter case. The main point is that the

=K' €))

7 is a stopping time with respect to a filtration Fy if {7 < ¢} € Fi.

original sequential observations might not be i.i.d. but after
aggregated to randomization unit level, likelihood ratio can be
easily calculated using those aggregated values which can be
assumed i.i.d. because of the randomization design.

A. Intuitive Explanation

There is an intuitive explanation of Theorem 1 using the
same simulation procedure in Section III as a thought exper-
iment. Again we assume prior odds is 1:1 so Posterior Odds
equals to the Bayes Factor and (4) becomes (6).

We simulate M paths of sequential observations from H;
and Hy. M is a very large number, almost infinite. So every
path simulated from H; which has nonzero probability under
Hy will have the same path simulated under Hy, and vice
versa. For each path we simulate the whole path X up to the
fixed final horizon N. For any ¢ < N and any path X, we can
calculate a Bayes Factor at time ¢ to be BF(X;) as likelihood
ratio P(X;|H1)/P(X¢|Hp). No stopping rule has been intro-
duced yet so everything so far belongs to the fixed horizon
case. Define Path(X:|H;),i = 0,1 to be the set of all paths
simulated from H;,7 = 0, 1 having the same subpath X; up to
time ¢, and let | Path(-)| denote the total number of paths in a
path set, i.e. cardinality. Then for any t and any path X with
subpath X;, |Path(X¢|Hy)|/|Path(X¢|Hp)] = BF(Xy).
Intuitively, this means for every subpath X; simulated from
Hy, there are on average BF(X;) exact subpaths simulated
from H;. Because this statement is true for any subpath. If
we only look at subpaths such that BF(X;) = K, we have
|Path({X; : BF(X;) = K}|H;)|/|Path({X; : BF(X;) =
K}|Hyp)| = K, for any K.

Now we introduce stopping rule. Pick any path X simulated
from Hj, say the stopping rule will stop at time ¢ and we
computed the Bayes Factor to be K. The previous argument
shows there will be on average K number of the the same
exact subpath simulated from H;. Here comes the important
part! Because the stopping rule does not depend on observa-
tions after the stopping time, all subpaths simulated having the
exact same subpath X; up to t will also have the exact same
stopping time at t! (See the next section for examples of bad
stopping rules where this property is not true, hence Theorem 1
does not apply.) After we gathered all paths simulated from H
with the same Bayes Factor K at time ¢ which also stopped at
time ¢ according to the stopping rule, for each one of them we
can find K exact same subpaths which also stopped at time t.
By one more step of gathering all such set of paths for every
possible ¢ < N, it is then intuitively clear that the number
of paths gathered together from H; and H, have a ratio of
exactly K. This is exactly what we tried to demonstrate via
various simulations in Section III.

V. BAD PRACTICES
Theorem 1 is a general result with very mild assumptions
which are satisfied in most cases. But failure of satisfying
those assumptions can result invalid test results. We list three
bad practices so readers can be aware of the limitations of the
result in this paper. One critical assumption is that the stopping
rule is properly defined that only uses information already



observed, without peeking into the future. One example for
an improper stopping rule is to reassess all the observations
at some time t’, and then decide to only use the data up to an
earlier time ¢ < t', e.g. stop at ¢ after seeing data at a later time
t’. This practice is called data snooping and is not supported
by Theorem 1. There are two common bad practices related
to data snooping:

Example 2 (Re-analysis after Fail to Reject):
Finite horizon test at IV failed to reject Hy. The same data is
then reanalyzed using continuous monitoring as in Example 1.

Example 3 (Optimal Stopping):
The basic setup is the same as in Example 1. This time we
first collect all the data up to finite horizon N. Then, we look
at our data and try to find the best check-point ¢ so the test
result R; is the most favorable. The difference between this
example and continuous monitoring is that for the latter the
decision of stopping the experiment is made without peeking
at the data in future.
In both examples above, if we collected all the data up to
horizon N and did the test, we should always report this test
result instead of re-analysing the data or try to cherry pick
the optimal stopping time. This is because Bayesian test is
consistent: as we observe more data, posterior P(H;|Data)
converges to 1 if H; is true and to O otherwise. This means
we should always prefer the decision made from more data.
However, it is possible that continuous monitoring might have
rejected H; (if it were used) but the finite horizon test at
N does not. Does that mean continuous monitoring makes
more error? No! Table I shows continuous monitoring does
increase the amount of null rejection, without sacrificing the
false discovery rate. In the above case the posterior odds
realized in the end of the experiment at horizon N shows
H, is unlikely to be true. It is fair to say if we had been
using continuous monitoring, we would likely be making a
false discovery at that time, based on newer observations.
However, let K’ be the posterior odds reported by continuous
monitoring, Theorem 1 guarantees that it is K’ to 1 odds
that we will see posterior odds increasing to oo if we keep
getting more data, than decreasing to 0. In other words, it is
K’ — 1 more likely our decision still uphold in the end of the
experiment, than reversed as in the hypothetical case.

Another critical assumption in Theorem 1 is that the likeli-
hood ratio has to be correctly calculated with all available
observations, i.e. the whole subpath X;. In particular, we
cannot cherry pick only those observations that favors one
hypothesis. Here is another bad example which happens a lot
in practice.

Example 4 (Continuous Testing until Win):
With agile development and continuous A/B testing, a team
can iteratively modify and test a feature until seeing a suc-
cessful test result.
In NHST, even if the feature has no effect, there is still
a(typically 0.05) chance that the result could be statistically
significant. This means for every 20 iterations, we might just
declare a success without really having any true effect. This
is like continuous monitoring, but the difference is that here

each new test only uses its own data. Using Bayesian test, if
we need to calculate the likelihood ratio up to the ¢-th test, we
have to aggregate all the evidence together, not just looking
at the last one. If all tests are independent replications of the
same test, aggregating evidence in Bayes test is trivial, we just
need to multiply likelihood ratio for each of the replications all
together. This way even if we might have a few large likelihood
ratio favoring H1, but if Hj is the ground truth there have to
be more smaller likelihood ratios so the product is small. In
fact it will converge to 0 if we keep doing replication runs. In
practice, since iteration runs are not exactly replications, it is
still a challenge how we should properly aggregate evidence
from multiple experiment runs together. Ignoring the prior
runs can still result in more false discovery than nominally
controlled. Technically this is the area of multiple testing and
selection bias. See Lu and Deng [19] for some preliminary
results.

VI. BAYESIAN PROMISES WITH OPTIONAL STOPPING

In this section we continue our earlier simulation approach
in Section III for Bayesian Promise (2) with optional stopping.
We also study the implication of optional stopping on Type-
I, Type-II error(power) and point estimation for the effect. In
particular, we emphasize two Bayesian Non-Promises.

1) Bayesian test does not promise Type-I error control.

2) Bayesian optional stopping does not promise unbiased

effect estimation using frequentist MLE.

A. Stopping Rule Based on Bayes Factor

If rejecting Hy when observing a posterior odds no less
than K exposes us to a risk of false discovery at most 1/(1+
K), a natural stopping rule is to prescribe a false discovery
rate (FDR) bound and stop the test immediately if observed
posterior odds already can guarantee the FDR control. We can
set K = 9 to guarantee a FDR bound of 10% = 1/(9 + 1).

Similarly, we can early stop for futility and accept Hj if
we believe posterior of null is sufficiently large. A symmetric
design is to stop if posterior odds is either no less than K or
no greater than 1/K.

Figure 2 illustrated both stopping rules under the same
setup in fixed horizon case of Section III, except that we
stopped at the first ¢ < N when the above stopping rule is
satisfied. In each of the 100,000 simulation runs, regardless
of whether this run is early stopped or stopped in the end, we
always calculate Bayes Factor based on Equation 5, replacing
N by the observed stopping time 7. Comparing Figure 2 to
Figure 1 shows big differences. The biggest one being the
spike at the stopping Bayes Factor boundary K = 9 (and 1/9
for futility). However, the interesting observation is, despite
the huge histogram shift for both H;(red) and Hy(green),
those numbers on the top margin — ratios of observed Bayes
Factors in each bin from H; to Hj, remains very close to the
theoretical Bayes Factor value calculated from Equation 5, as
in a fixed horizon test. This is exactly what Theorem 1 claims,
and this simulation study confirms it!

For many who are used to the frequentist thinking of
controlling Type-I error, this result seems odd. If we allow
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Fig. 2. Histograms of simulated Bayes Factor with optional stopping. Top
plot: one-sided stopping. Bottom plot: two-sided stopping.

early stop, and still using the same rejection criteria of BF
> 1/K, we will only reject more so we will be inflating the
Type-I error. This is correct, but nonetheless does not conflict
with the fact that FDR is still controlled below the designed
level.

TABLE I
IMPACT OF EARLY STOPPING

Early Stop Rate

Type-I Power FDR H; Hy
Fixed Horizon 0.018 0465  0.037 NA NA
One-sided Stop  0.060 0.599  0.09 59.5% NA
Two-sided Stop  0.060 0.598  0.09 64.9%  65.0%
TABLE II

POINT ESTIMATE AND STANDARD ERROR WITH EARLY STOPPING:
GROUND TRUTH IS 0.2.

Early Stop No Early Stop  Unconditioned
Fixed Horizon NA NA 0.201(0.0004)
One-sided Stop  0.366(0.0009)  0.112(0.0004)  0.263(0.0007)
Two-sided Stop ~ 0.319(0.001) 0.125(0.0004)  0.251(0.0009)

Table I shows the comparison of three simulation studies
we did so far in terms of Type-I error, power and FDR.
In the fixed horizon design, when we reject for BF>9, the
Type-1 error (proportion of false rejection among the null
cases) is 0.018. This value increased to 0.06 when continuous
monitoring/optional stopping is introduced. Because we are
rejecting more, the power of the test is also improved from
0.465 to 0.599. FDR in the finite horizon cases is only 0.037,
smaller than the designed bound of 0.1. This is because in the
finite horizon cases a lot of rejected cases at the end of the test
are actually bearing a BF much larger than the threshold 9, see
Figure 1. This suggests that in finite horizon test, using a BF
cutoff to calculate FDR might be conservative, also see Efron
[10] for the differences of local FDR and FDR. When optional
stopping is introduced, FDR become 0.09, very close to the
designed level. The small discrepancies here is due to over-
shoot, i.e. we stop once BF is larger than 9 but not exactly at
9. These over-shoots are reflected in Figure 2 where we found
a few bars beyond the spike. In large sample scenario where
each individual observation won’t make a big change in BEF,
as in most A/B tests, we can think of the time series of BF}
as continuous. In this case we can stop the test with a BF
almost exactly equal to 9, and the FDR will be also almost
exactly 0.1. We saw that FDR control in the fixed horizon
setting is conservative because we are wasting sample sizes
to collect evidence beyond what we really need, and with
early stopping the waste is mitigated. The last two columns
in Table I shows the percentage of the simulated experiment
with early stopping. We saw majority of the simulated runs
stopped earlier. We also calculated that the average length
of the simulated runs with early stopping is about 55, much
smaller than the fixed horizon of N = 100. Based on Table I,
one could argue that early stopping is always superior than
the fixed horizon test, and should be recommended if the sole
purpose of the study is for hypothesis testing.

Table II shows the sample mean, which is the frequentest
MLE for the effect in this one sample test scenario. Those
are average of sample means taken from those 50,000 runs
simulated under H;. For fixed horizon test, it is centered
around the true effect 0.2. However, when we use optional
stopping, we get biased estimation when averaged across all
of the 50,000 runs (numbers in parentheses are standard
error of the average MLE). We further separate the cases
where early stopping happened or not. We can see that in
both one-sided and two-sided stopping, when early stopping
happened, the average MLE are much higher than the true
effect. When early stopping didn’t happen, the average is
lower. This reflect a common criticism of Bayesian optional
stopping that it produces biased effect estimation, especially
when early stopping is triggered. This is actually a misunder-
standing of the Bayesian Promise. To be clear, our Theorem 1
didn’t make any promises regarding effect estimation. We
assume the alternative model, i.e. distribution of the effect
under alternative is known and how to objectively learn this
distribution is another orthogonal task we will mention later



in Section VIL.® Also, if we were to make some promises
about effect estimation, under Bayesian framework we should
be looking at posterior mean instead of frequentist MLE.
Just like we never make promises for Type-I error, a lot
of misunderstanding of Bayesian promises is due to mixing
Bayesian test with frequentist methods [12]. Note that even
using frequentist NHST, conditioned on a result that Hy is
rejected, the MLE will still over-estimate the true effect due
to post selection bias.

We do not want to underplay the importance of effect
estimation. An extended discussion of Bayesian effect size
estimation with optional stopping is beyond the scope of this
paper and recently has been nicely discussed in Schonbrodt
[23]. If the purpose of the study is for effect estimation, then
a more proper stopping rule should be based on accuracy re-
quirement, e.g. stop when required posterior standard deviation
is achieved.

B. General Stopping Rule

Theorem 1 holds for general stopping rules, not only those
based on BF cutoff values. For experimenters who want to
“hack” p-values, they could choose to stop once p-value is less
than «. Here we did the simulation study with the stopping
rule with both criteria: 1) p-value less than 0.1, and 2) the
sample sizes is at least 10.

Early stop with customized rules
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Fig. 3. Using a stopping rule based on p-value and minimum required sample
size.

Figure 3 shows the simulation results, this time with a
rather bizarre histogram for H; runs. The important part is
the observed actual ratio on the top margin still closely tracks
the theoretical Bayes Factor values on the x-axis.

C. Composite Alternative

So far in this section we have been using a overly simple
alternative model H; where the treatment effect is assumed
to be known. This is not very realistic since we never know
the effect so that alternative is always a composite alternative
where 0 can be anything nonzero. In Bayesian model com-
parison we need to put a prior distribution for § under Hi, in

81n this particular simulation study we fix the alternative to be 0.2 under
Hy, a known quantity so estimate the effect makes no sense at all.

addition to the prior odds. Following [13] and [8], we put a
normal prior N(0,03)). Under this Hy, X; ~ N (0,03 + 1)
and the formula for Bayes Factor assuming a fixed sample size
N changes to

N(Y;O,U% +1/N)
N(X;0,1/N)

(10)

A similar simulation to those above in this section is run
by setting N = 1,000. We also set o9 = 0.1 to generate
50,000 independent ¢ first for each of the simulation runs
from H;. At the end of each runs(or at the stopping time)
we compute Bayes Factor based on (10) with N for fixed
horizon setting or 7 in its place when optional stopping is
introduced. Figure 4 shows the results for both fixed horizon
setting and optional stopping with BF cutoff at 9. In the fixed
horizon setting, the histogram is much more dispersed than
the previous precise alternative case. Some BF is as large as
several thousands so we only show those no greater than 100.
Early stopping effectively eliminated those extremely large BF,
creating spikes around 9. We hope readers at this point already
noticed that the top margin numbers are very close to the
theoretical BF values on the x-axis.

Fixed horizon test with composite alternative
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VII. OBJECTIVE PRIOR LEARNING

Theorem 1 and all the discussion of this paper so far
assumes two things are known:

1) model under Hi, i.e. the effect distribution under Hi,

2) prior probability P(H;) and P(Hj), or equivalently the

prior odds P(H,)/P(Hy).

With this crucial assumption we argued that the Bayesian
Promises in Equations (2) and (3) do not change when optional
stopping is used. However, in reality we almost always don’t
know both the model under H; and the prior probabilities.
Some people rely on subjective belief, and of course are hard
to be accepted by scientific community. A lot of practical
application of Bayesian Model use ‘“non-informative” prior.
These are less subjective but ironically still contains strong
prior information. For A/B testing platform at scale (tens or
hundreds of experiments per month), rich historical data exist
and prior can be learned objectively from the empirical data
by making the assumption that the current is like the past
using hierarchical model [8]. This idea is similar to [14] which
applied empirical Bayes techniques to signal processing.

Hierarchical model prior learning involves two steps. First,
two sample t-test are transformed into a one sample problem
with proper rescale so that the prior are defined in scaleless
effect size. Then we use a hierarchical model where both
the model under H; and prior probabilities are unknown
parameters. Fitting the hierarchical model can be done using
either MLE (Empirical Bayes) as in [8] or Hierarchical Bayes
(Full Bayes).

Suppose observations for treatment and control groups are
1.i.d. from two distributions with unknown mean 7 and 7¢
respectively. Denote our observations by Y;,7 = 1,..., N
and X;,2 = 1,..., Nc. We test the null hypothesis Hj :
7p — ¢ = 0 against the alternative Hy : 70 # 7¢. Without
assuming distributions of X and Y, we use the central limit
theorem and hence use Wald test which is large sample version
of the well-known t-test. The test statistic is

X-V - A

Vo /Nt + 0% /Ne /o7 /Nr + 0% /N’
where o and o7 are variances of X and Y and A is the
observed metric difference between treatment and control. The
variances are also unknown but in large sample scenario we
assume they are known and use their estimates. We define
Ng = 1/(1/Nr + 1/N¢) to be the effective sample size.
And then let 0% be the pooled variance such that 02 /Ng =
02./Nr + 0% /Nc. With the shorthand § = A /o, Z-statistics
can be rewritten as

Z .=

7- 0 (11)

V1/Ng

0 is A scaled by pooled standard deviation and is called the
effect size. Finally, define

pw:=FE@)=EA))o=(rr—10)/0

is the average treatment effect scaled by o. When o is treated
as known, inference on 70 — 7¢ and p are equivalent. In

(12)

Bayesian analysis it is common to define prior for p as it
is scaleless.

Recall 4 is the average effect size. Under Hy, i = 0. Under
H,, we assume a prior 7 for u. For both cases we observe
d ~ N(p,1/Ng). In addition, we assume a prior probability
p for Hy, and also under Hy, 7 ~ N(0,V?) for some V.
Our challenge is to learn both p and V' without the need of
subjectively assigning one. Note that the procedure works for
different 7.

Next we take advantages of historical experiment results
and use them to learn the prior parameters p and V. Suppose
for a given metric, we have N previously conducted tests with
observed effect size and effective sample size (0;, Ng;),i =
1,...,N. If we know which one of these are from H; and
Hy, learning p and V' are straightforward. Because those labels
are latent, Expectation-Maximization[7] is typically applied
for MLE. [8] describes a detailed EM algorithm.

For a full Bayesian inference, we put yet another layer of
prior for p and V. Inferences can be done by using MCMC or
approximation methods, e.g. variational Bayes. We provide a
Stan[4] model in Appendix. Note that in the Stan Model we
do not supply prior for p or V' and Stan will use uniform prior
(in a transformed unconstrained space). The specification of
this hyper prior is less critical when the number of historical
experiments are at least hundreds, in which case MLE and
Bayesian posterior mean are also very close.

In our opinion, learning priors objectively is critical for
any study which hopes to use optional stopping and relies on
Theorem 1. Once the prior learning has finished, it should be
fixed during the experiment stage when continuous monitoring
and optional stopping are used.

VIII. CONCLUSION & RECOMMENDATION

We hope the debate over whether continuous monitoring is
a valid practice for Bayesian Hypothesis Testing is settled by
Theorem 1 in this paper. The answer is yes and the Bayesian
Promises (2) and (3) in fixed horizon case remains unchanged
when a proper stopping rule is used. We emphasize that the
correct understanding of (4) and interpretation of Bayesian
test result as controlling FDR is critical and we should not
mix Bayesian test results with frequentist concepts. Trying to
evaluate Type-I error of Bayesian Test under either null or
alternative is fallacious because the correct Bayesian interpre-
tation always requires a prior odds weighing the alternative
and the null. Our simulation illustrations in Section III and
Section VI serve the very goal of helping readers understand
what are the promises a Bayesian test tries to make and what
not.

Two natural questions are raised by practitioners. 1) Because
the fundamental differences in the statistical conclusions we
can make from NHST and Bayesian test, which one shall we
use in practice? 2) Is the result of this paper suggesting we
should always use continuous monitoring for Bayesian tests?

The answer for the first question amounts to the choice
between controlling Type-I error and FDR. If false rejection
of any single test cost us a lot, and the cost of false rejection



is considered higher than false negative, then Type-I error
seems to be a better criterion to control, e.g. clinical trial.
If our goal is not for each individual test, but our decisions’
overall performance on a large set of tests, and the cost
of false rejection and false negative are in the same order,
then we believe FDR is a better criterion. Large scale A/B
testing platform is an example of the latter [16]. In an agile
environment where success is built on many small gains, as
long as we are shipping more good features than useless ones,
we are moving in the right direction.

For the second question, continuous monitoring is not al-
ways recommended. In many cases, the goal of the experiment
is not only to confirm the existence of the treatment effect,
but also to measure it. In A/B tests, it is not uncommon for a
feature to have time-varying treatment effect such as weekday
and weekend effect. To capture the weekly cycle, running tests
for a whole week or multiple of weeks are often necessary.
It is also possible that the treatment effect only exists in the
weekend and we might early stop the experiment during the
first few weekdays result in false negative. Also, conditioned
on early stopping happened or not, Bayesian posterior can
have a bias for effect estimation [23]. Continuous monitoring
should be recommended in many other scenarios. Shutdown a
bad experiment is one application in which we want to stop an
experiment once we have enough evidence that the treatment
is giving user a very bad experience. Another example is
comparing a few closely related alternative candidates, e.g.
tuning parameters for a backend algorithm, in which case we
might assume the ordering of the treatment effects won’t be
time-varying and hence we can early stop inferior candidates
and allocate traffic to outperforming candidates based on
Bayesian posterior. The last example is studied in more detail
in the literature of multi-armed bandit and Thompson sampling
[5] and the result of this paper justifies Thompson sampling
for using Bayesian posterior to dynamically change traffic
allocation.

ACKNOWLEDGMENT

We thank anonymous reviewers for their valuable feedback.

REFERENCES
[1] Bartroff, J., Lai, T. L. and Shih, M.-C. [2012], Sequential

experimentation in clinical trials: design and analysis, Vol. 298,
Springer Science & Business Media.

[2] Berger, J. O. and Bayarri, M. J. [2004], ‘The Interplay of
Bayesian and Frequentist Analysis’, Star. Sci. 19(1), 58-80.

[3] Berger, J. O. and Berry, D. A. [1988], ‘The relevance of stopping
rules in statistical inference’, Statistical decision theory and
related topics IV 1, 29-47.

[4] Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B.,
Betancourt, M., Brubaker, M. A., Guo, J., Li, P. and Riddell, A.
[2015], ‘Stan: a probabilistic programming language’, Journal
of Statistical Software .

[5] Chapelle, O. and Li, L. [2011], An empirical evaluation of
thompson sampling, in ‘Advances in neural information pro-
cessing systems’, pp. 2249-2257.

[6] Dawid, A. P. [1979], ‘Conditional independence in statistical
theory’, Journal of the Royal Statistical Society. Series B
(Methodological) pp. 1-31.

[7] Dempster, A. P., Laird, N. M. and Rubin, D. B. [1977], ‘Max-
imum likelihood from incomplete data via the EM algorithm’,
J. R. Stat. Soc. Ser. B 39(1), 1-38.

[8] Deng, A. [2015], Objective bayesian two sample hypothesis
testing for online controlled experiments, in ‘Proceedings of
the 24th International Conference on World Wide Web’.

[9] Durrett, R. [2010], Probability: Theory and Examples, Cam-

bridge University Press.

Efron, B. [2004], ‘Large-scale simultaneous hypothesis testing:

The choice of a null hypothesis’, Journal of the American

Statistical Association 99, 96—104.

Erica, C. Y., Sprenger, A. M., Thomas, R. P. and Dougherty,

M. R. [2014], “‘When decision heuristics and science collide’,

Psychonomic bulletin & review 21(2), 268-282.

Gelman, A. [2014], ‘Stopping rules and bayesian analysis’.

Johari, R., Pekelis, L. and Walsh, D. J. [2015], ‘Always valid

inference: Bringing sequential analysis to A/B testing’, arXiv

preprint arXiv:1512.04922 .

Johnstone, I. M. and Silverman, B. W. [2004], ‘Needles and

straw in haystacks: Empirical bayes estimates of possibly sparse

sequences’, Annals of Statistics pp. 1594-1649.

Kass, R. and Raftery, A. [1995], ‘Bayes factors’, J. Am. Stat.

Assoc. 90(430), 773-795.

Kohavi, R., Deng, A., Frasca, B., Xu, Y., Walker, T. and

Pohlmann, N. [2013], ‘Online controlled experiments at large

scale’, Proc.19th Conf. Knowl. Discov. Data Min. .

Kohavi, R., Longbotham, R., Sommerfield, D. and Henne,

R. M. [2009], ‘Controlled Experiments on the Web: survey and

practical guide’, Data Min. Knowl. Discov. 18, 140-181.

Kruschke, J. [2013], ‘Optional stopping in data collection: p

values, bayes factors, credible intervals, precision’.

Lu, J. and Deng, A. [2016], ‘Demystifying the bias from

selective inference: A revisit to Dawid’s treatment selection

problem’, Statistics and Probability Letters 118, 8-15.

Rouder, J. N. [2014], ‘Optional stopping: no problem for

Bayesians.’, Psychon. Bull. Rev. 21(March), 301-8.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D. and

Iverson, G. [2009], ‘Bayesian t tests for accepting and rejecting

the null hypothesis.’, Psychon. Bull. Rev. 16(2), 225-37.

Sanborn, A. N. and Hills, T. T. [2014], ‘The frequentist im-

plications of optional stopping on bayesian hypothesis tests’,

Psychonomic bulletin & review 21(2), 283-300.

Schonbrodt, F. D. [2015], ‘Sequential hypothesis testing with

bayes factors: Efficiently testing mean differences’.

Siegmund, D. [2013], Sequential analysis: tests and confidence

intervals, Springer Science & Business Media.

Wald, A. [1945], ‘Sequential tests of statistical hypotheses’, The

Annals of Mathematical Statistics 16(2), 117-186.

APPENDIX

[10]

(11]

[12]
(13]

[14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]
(24]

(25]

STAN MODEL

data {
int<lower=0> N; //
real deltal[N]; /
real Neff [N],; /,

}

parameters {

real<lower=0, upper=1> p; //I

real<lower=le-3,upper = 1> V rea ct
}
model {

real altsigma[N],
for (n in 1:N) {
altsigma[n] <- sqgrt(l/Neff[n]+V~2);
}
for (n in 1:N){
increment_log_prob (log_sum_exp (loglm(p)
+ normal_log(deltal[n], 0, altsigma[n]),l
+ normal_log(deltaln], 0, 1/sqgrt (Neff[n]

;



