
Characterizing Experimentation in Continuous
Deployment: a Case Study on Bing

Katja Kevic
University of Zurich

Switzerland
kevic@ifi.uzh.ch

Brendan Murphy
Microsoft Research

United Kingdom
bmurphy@microsoft.com

Laurie Williams
North Carolina State University

United States of America
lawilli3@ncsu.edu

Jennifer Beckmann
Microsoft

United States of America
jennifer.beckmann@microsoft.com

Abstract—The practice of continuous deployment enables
product teams to release content to end users within hours or
days, rather than months or years. These faster deployment
cycles, along with rich product instrumentation, allows product
teams to capture and analyze feature usage measurements.
Product teams define a hypothesis and a set of metrics to assess
how a code or feature change will impact the user. Supported
by a framework, a team can deploy that change to subsets
of users, enabling randomized controlled experiments. Based
on the impact of the change, the product team may decide
to modify the change, to deploy the change to all users, or
to abandon the change. This experimentation process enables
product teams to only deploy the changes that positively impact
the user experience.

The goal of this research is to aid product teams to improve their
deployment process through providing an empirical characteriza-
tion of an experimentation process when applied to a large-scale
and mature service. Through an analysis of 21,220 experiments
applied in Bing since 2014, we observed the complexity of the
experimental process and characterized the full deployment cycle
(from code change to deployment to all users). The analysis
identified that the experimentation process takes an average of 42
days, including multiple iterations of one or two week experiment
runs. Such iterations typically indicate that problems were found
that could have hurt the users or business if the feature was
just launched, hence the experiment provided real value to the
organization.

Further, we discovered that code changes for experiments
are four times larger than other code changes. We identify
that the code associated with 33.4% of the experiments is
eventually shipped to all users. These fully-deployed code changes
are significantly larger than the code changes for the other
experiments, in terms of files (35.7%), changesets (80.4%) and
contributors (20.0%).

Keywords-continuous deployment; experimentation; empirical
analysis; full deployment cycle

I. INTRODUCTION

As the software industry has moved towards a service
model, different companies have adopted techniques such
as continuous deployment, in which software is continually
released to users [24]. Increasing the rate of releasing soft-
ware, radically changes the way software is developed and
deployed [5]. Previously product changes occurred as part
of major releases while in continuous deployment products
evolve. Some organizations have chosen to couple this rapid
deployment with an experimental framework to assess the
impact of changes on the end user using a practice referred

to as continuous experimentation [12]. Some products, such
as Bing, have been using online controlled experiments, since
2009 [15]. Visibility of continuous experimentation increased
with the build-measure-learn cycles advocated in the Lean
StartUp methodology [26] in 2011 based upon experiences
at IMVU. As the value of continuous experimentation is more
and more recognized, large organizations, such as Facebook,
Google, and Netflix, increasingly employ continuous experi-
mentation [25].

These incremental, rapid deployments offer the opportunity
for development teams to formulate hypotheses about expected
user behavior due to a software change, define metrics needed
to be collected to verify the hypotheses, and continuously learn
how users react. The process to verify hypotheses is through
controlled experiments1 [22]. Different versions of the product
are exposed to randomly-chosen user subgroups. By measuring
users behavior in each group, development teams have the
ability to make a data-driven decision of whether to modify,
delay, or abandon the given software change [15], [20], [21].
If a software change is abandoned the code associated with it,
is removed from the system.

While a few works investigated the experimentation process,
they often focus on the use of the process to evolve small
products or services (e.g., [21]), or share experience reports
and lessons learned (e.g. [17], [28]). The full life-cycle from
an experiment’s first code change all the way to the analysis of
the captured usage measurements has not been characterized.
Parts of product strategies evolve based on experiments’
outcome [12], [11]. Therefore, knowing how quickly a product
team can learn from experiments may help to better plan
product strategies. Furthermore, knowing more about the code
changes used for experiments may allow the elaboration of
different experimentation procedures tailored to different kinds
of code changes. Finally, we determine how many experiments
are ultimately deployed to all users. Knowing more about the
amount of deployed experiments helps to assess the efficiency
of continuous experimentation approaches for products in
different maturity stages. Previous research has not addressed
how the code changes for experiments that were deployed
to all users differ from the code changes which were not

1Also called A/B tests, split tests, bucket testing, randomized experiments,
online field experiments, canary, flighting, or gradual rollouts.

deployed to all users. Knowing more about these differences
might enable efficiencies in the product development and
experimentation processes.

The goal of this research is to aid product teams to improve
their deployment process through providing an empirical char-
acterization of an experimentation process when applied to a
large-scale and mature service. In particular, we investigate
the following research questions:

RQ1: What are the characteristics of experiments
and their development efforts, in terms of time spans,
number of people involved, files and changes in a
large-scale and mature product?
RQ2: What percentage of experiments are ultimately
deployed to all users?
RQ3: How do the experiments which are deployed
to all users differ from the experiments which were
not deployed to all users in terms of time spans,
number of people involved, files and changes?

To answer these questions, we conducted a large-scale
empirical analysis of Bing, Microsoft’s search engine. We
analyzed 21,220 experiments conducted in Bing since 2014,
and all code changes that occurred during the same period of
time. These experiments include a variety of different kinds
of hypotheses that are tested. These hypotheses range from
testing tweaks in algorithms to the impact of user interface or
configuration changes on the end users. Through establishing
a procedure to link specific change sets within Bing’s change
history to specific experiments, we analyzed the code changes
committed for experiments. A change set includes one or
multiple files changed at the same time. Through this analysis,
we inferred whether the code changes for an experiment were
ultimately deployed to all users. Change sets which we could
not link to experiments were also analyzed.

The remainder of this paper is structured as follows. First,
we present background on continuous experimentation and the
related work which has been conducted in this area. Then, we
describe how experiments are conducted within a large-scale
and mature product, i.e. Bing. We describe the main points
which increase the complexity of the experimentation process.
Section IV describes the historical data that we used to analyze
characteristics of experiments and infer whether the software
change for the experiment was ultimately shipped to all users.
The results of this analysis are described in Sections V,VI, and
VII. We then discuss the threats to validity in Section VIII, our
findings in Section IX, and conclude our work in Section X.

II. BACKGROUND AND RELATED WORK

In this section, we provide background and related work on
continuous deployment and continuous experimentation.

A. Background

We define and differentiate four terms used in this paper:
Continuous Integration Software is developed in smaller,

incremental change sets which are regularly integrated
into the codebase of the complete product, where a

process automatically builds and runs a test suite daily,
hourly, or even per individual change [10].

Continuous Delivery The automated implementation of an
application’s build, deploy, test, and release process [13].

Continuous Deployment A continuation of the continuous
delivery process, where the application or service is
automatically deployed to the customer [13].

Continuous Experimentation All changes require a clear
hypothesis of their impact on the end customer, and that
hypotheses are verified against a subset of customers prior
to full deployment [12].

We found that the terms delivery and deployment are often
incorrectly used interchangeably in literature on this subject.

One of the prerequisites for continuous experimentation, is
that a product team deploys code changes frequently through
continuous delivery or continuous deployment. Continuous
integration enables both, continuous delivery and continuous
deployment processes.

Through verifying the product at both, unit and system level,
bugs can be detected soon after they have been introduced,
and the quality of the software can be measured and analyzed
over time. For example, the Apollo space mission, in the
1960s, incorporated all changes made during the day into a
single overnight computer run [23]. Hence, developers can be
increasingly confident about the quality of their code change.
Further, by including feedback mechanisms into each step
in the continuous integration pipeline, developers have the
possibility to react immediately to merge conflicts, to bugs or
to irregularities within the collected measures. One of the main
benefits of employing the principles of continuous integration
is that the product remains in a deployable state and could be
released at any point in time.

Further advancements in technology beyond continuous
integration enabled continuous delivery and continuous de-
ployment practices. These later two practices originated in
the Software-As-A-Service area, whereby changes to the code
base could be rapidly deployed to the service and the impact
of these changes on the end users can be measured.

In an experiment, different versions of the product are
exposed to different randomly chosen user groups. One version
of the product includes a change or a new feature, referred to
as the treatment, and the other version is the current version
of the product, referred to as the control [22].

For each experiment a prior hypothesis is formulated which
states that the treatment is not better than the control when
evaluated with a measure2, which measures the targeted aspect
of the user behavior [20]. As the experiment runs for a
predefined amount of time, the initial hypothesis is evaluated
through testing for statistical differences between the treatment
and the control. If the null hypothesis can be rejected, the
users, in fact, react differently to each version of the product.

Five main components enable developers to run experi-
ments [20], [12], [11], [24]:

2Also called the overall evaluation criterion (OEC), response, dependent
variable, outcome, evaluation metric, key performance indicator, endpoint or
fitness function.

1) a hypothesis on the experiment’s objective which is
modeled in measurable metrics;

2) the instrumentation of the product;
3) a randomization algorithm;
4) an assignment method;
5) and a data path.
The product is instrumented such that the metrics defined

to verify the hypothesis can be captured. The randomization
algorithm is used to identify the users that are exposed to either
the treatment or the control of an experiment. One difficulty
for a large-scale product in which parallel experiments are run,
is that the randomization algorithm has to ensure that there are
no correlations between the assignments of experiments. The
assignment method is the mechanism in place used to route
user requests to the specified version of the product.

Users can be assigned to specific version of the product
using techniques, such as traffic splitting, page rewriting,
client-side assignment, and server-side assignment. Kohavi et
al. [20] elaborate the advantages and disadvantages of each
method. Finally, the data path is responsible for collecting the
defined metrics and preparing the statistical analysis.

B. Continuous Experimentation at Microsoft

Different works analyzed the experimentation process
within Bing. Kohavi and colleagues [17], [18], [19] and Crook
and colleagues [6] share their insights and lessons learned
while running an experimentation process at a large-scale.
They work out seven rules of thumb for running controlled
experiments and seven pitfalls to be avoided when running
controlled experiments. They identify three main categories
of challenges, including organizational challenges, engineering
challenges, and the challenge of having a trustworthy exper-
iment outcome. While Kohavi et al. [15] further look into
the cultural aspects and share valuable real-world examples,
Kohavi et. al [20] focus on the technical aspects in more detail
and summarize the cost of experimentation when using differ-
ent assignment methods. The trustworthiness of experiments
is further elaborated through the analysis of five experiments’
outcomes by Kohavi et al. [16]. Deng et al. [9] investigate how
the percentage of users to which the experiment is exposed
or the exposure duration of the experiment can be reduced
while the same statistical power can be observed. Deng [8]
explores an objective Bayesian A/B testing framework to
analyze metrics. In this paper we build upon that work with
a focus on the full life-cycle of experiments, characterizing
experiment and code changes attributes.

C. Other Continuous Experimentation Research

Several case studies have been conducted which identified
the challenges which are faced when employing experimenta-
tion. Other researchers [7], [15], [17], [21] have identified the
cultural shifts often necessary in development teams to be one
of the major challenges. In particular, the risk of individuals
losing power or prestige due to experiment results contrary to
their own intuitions and the importance of a consistent reward
system which rewards the volume of valuable experiments

regardless of outcome have been observed as the main cultural
challenges. Lindgren and Münch [21] further identified that
slow development cycles, the product instrumentation and the
identification of the metrics to measure the user experience are
further challenges. Rissanen and Münch [27] largely confirmed
these challenges when they studied experimentation in a
B2B environment. They further found that the capturing and
transferring of user data becomes a further challenge, as legal
agreements come into play.

Fagerholm et al. [11], [12] explore a model of continuous
experimentation and how experiments are related to the vision
and the strategy of a startup company’s product. They found
that the results from experiments altered the strategy of prod-
ucts, but the vision of the product remained unchanged. Within
their suggested model, called RIGHT, the experimentation
process is structured into build-measure-learn blocks. In our
research, we approximate the duration of such a block.

While these case studies and experience reports focused
on identifying challenges within an experimentation process
and analyzed how experiments influence a product’s strategy,
we focus on the source code development efforts which are
involved in an experimentation process.

D. Experimentation - the State of Practice.

Systematic experimentation processes are prevalent in large
companies that offer SaaS services [4], [5], [17], [21], [29]. For
example, at Google every change that can impact customers
goes through an experimentation process [28]. Thereby, many
types of changes to the product are run as experiments: from
visual enhancements to changes within back-end algorithms.
These companies have developed scalable platforms which
offer the infrastructure to run experiments in a systematic
way. Many of these advanced experimentation platforms have
further tools to support the data analysis integrated. For
example, LinkedIn’s XLNT analysis dashboard [29] supports
experimenters to make a data-driven decision of whether
the experiment improved the user experience by presenting
summarized views. Other tools and platforms to run systematic
experiments are emerging. Google’s Analytics experiment
framework [1] and Facebook’s PlanOut [2] are two examples
of such frameworks that support an experimentation process.

When Lindgren and Münch [21] surveyed ten smaller
software companies to understand the current state of
the practice of experimentation processes applied, they
found that the surveyed companies recognize the value of
experimentation but only few companies run systematic
experiments often. As more and more services and even
desktop applications such as Chrome or Mozilla Firefox,
adapt principles of continuous delivery [3], experimentation
can become an integral part within the development cycle of
a wide range of different products.

While all these case studies and experience reports enable
important insights into different experimentation processes, we
add to the existing body of research the first empirical study on

a large-scale and mature experimentation process. In particular,
compared to previous works, we describe the full life-cycle of
an experiment from the first code change to the deployment
of the experiment.

III. BING EXPERIMENTATION PROCESS

For this case study, we analyze Microsoft’s search engine
Bing. Bing includes the main search results pages from
Bing.com, as well as several services that are consumed by
other Microsoft products, such as Cortana. Bing’s richness in
a variety of services enabled us to study the experimentation
process in different environments. While the majority of the
services are customer based, some are development support
services for the rest of Bing (e.g. developing the deployment
software). Bing is broken down into a large number of
independent components, where components are either library
components or dedicated to specific services. Since 2009,
Bing and other services across Microsoft, increasingly use
the Experimentation Platform (ExP). ExP was introduced by
the Experimentation Platform team within Microsoft that was
formed in 2006. ExP is a highly scalable platform that enables
a systematic experimentation process [15]. In the following,
we characterize the individual steps of in the experimentation
process in Bing (see Figure 1).

A. Experiment Design

In a first step, developers formulate a hypothesis that defines
the aspects of the users’ behaviors they seek to improve.
Then, they identify the set of metrics that allow the formulated
hypothesis to be tested. ExP provides a wide range of prede-
fined metrics that can be used to capture the users’ behaviors.
If this set of predefined metrics does not properly test the
developers’ hypothesis, the developers need first to implement
or request the needed instrumentation within the product to
capture additional aspects of the users’ behaviors. The set of
metrics that is identified for the experiment are then captured
within an ExP scorecard. Furthermore, experimenters need to
decide on the number of users that are exposed to each group
within the experiment and the amount of time the experiment
will be exposed to the users. A rigorous experiment design is
indispensable for being able to make a data-driven decision of
whether the feature should be deployed.

B. Pre-Study

Development teams have the possibility to rapidly evaluate
a predetermined hypothesis by creating an internal pre-
experiment prior to fully developing the software change.
Internal experiments are usually mock-ups or quick-hacks of
the idea that are submitted to an internal crowd-platform.
Within this crowd-platform, the mock-ups or quick-hacks are
shown to a chosen set of people, without identifying which
is the treatment and which is the control. The outcome of
these human judgments is then used to evaluate if the idea
should be further implemented and then run through the full
experimentation process or if the idea does not show potential.
Furthermore, product teams use the outcomes of these internal

experiments to prioritize the planned experiments.

C. Source Code Development and Deployment

The development team for each of the Bing services has the
autonomy to choose their own software development process.
Each service has its own development environment managed
through its own branching structure. Also the deployment
process varies among the different services and is often based
on the characteristics of the service itself. For instance, the
service that manages the user interface (UI) has an hourly
development and deployment cycle, where the deployment
process rolls out the changes in a controlled manner and rolls
back changes that have bugs. Conversely, the development and
deployment of complex state based services, such as the index
server can require additional verification: deployment cycles
can be weekly or longer.

D. Experiment Execution

After the source code is changed and deployed, the exper-
iment execution starts. Experiments generally run for one or
two weeks. To lower unforeseeable risks of system failures,
an experiment generally starts by directing a small percentage
of users to the advanced version, the treatment, of the product.
After some time, where no failures are detected, the percent-
age of users directed to the treatment gradually increases.
This mechanism ensures that if there was an issue with an
experiment only a small percentage of users experienced it.
There are different metrics which are continuously captured
while the experiment is running. One group of metrics, the
guardrail metrics, is the sentinel to the health of the product.
If metrics in this group change drastically, egregious issues
with the experiment are detected and ExP informs an alert
system, which shuts the experiment automatically down and
all traffic will be sent to the prior version. An example of a
guardrail metrics is the page load time.

Since ExP allows multiple experiments to run in parallel,
the risk of different experiments interacting with each other
increases. Because the interaction of experiments can corrupt
the metrics captured for each experiment and possibly harm
the user experience with the product, it is pivotal that a
possible interaction is prevented. If the prevention was by-
passed, the corruption it is quickly detected. ExP incorporates
mechanisms to prevent and detect interactions. To prevent
interactions between different experiments, each experiment
defines constraints. These constraints are used to identify the
experiments that should not be exposed to the same user. To
detect interactions between running experiments, ExP scans
and analyzes the metrics of pairs of running experiments.
If interactions between experiments are recognized, an alert
is raised and the owners of the experiment involved in the
interaction are informed. They then decide whether to stop
one of the experiments.

If a bug in the changed code or in the experiment config-
uration is detected, another alert is raised which informs the
owners of the experiments. If no issues are detected during the

experiment execution, the experiment is stopped automatically
after the exposure duration specified by the experimenter.

E. Data Analysis

To inform experimenters of the status of a running exper-
iment, ExP allows the creation of scorecards on a periodic
basis. A more extensive data analysis occurs after the experi-
ment completed.

If the experiment ran without any issues (i.e. no alerts
from the alert system reported and no bugs in the source
code detected), it is considered to be a valid execution of
the experiment. Developers can now decide between three
alternatives: deploy the experiment, abandon the experiment,
or iterate the experiment. Each experiment within Bing aims
to improve user behavior on two levels. The first level is the
same for each experiment within Bing. Metrics in this level
are called the main metrics which each experiment tries to
improve. These metrics target long-term goals of the product,
such as the number of clicked search results. The second level
is experiment-specific and targets the metrics that were defined
in the product team’s hypothesis for the experiment. Examples
of experiment-specific metrics are the elapsed time until a
first search result is clicked or whether a suggested query
completion was used. Based on the product team’s hypothesis
and the gathered metrics a data-driven decision of whether to
ship, abandon, or iterate the code change is made.

If the overall evaluation criterion (OEC) measurably im-
proved with the new version of the product, then the treatment
of the experiment is shipped and abandoned in the contrary.
In practice, the OEC takes several factors into account, such
as the user experience and revenue, and allows to trade one
factor off for another. If the product team cannot make a data-
driven decision based on the metrics that were collected, the
product team iterates on the experiment design and defines a
new set of metrics to test the hypothesis on. If the correct
metrics have been collected for the experiment, but more user
data is needed to enable a data-driven decision, then a new
iteration of the experiment is launched. Finally, the product
team can also decide to iterate on the source code change, but
to validate the same hypothesis.

If the experiment executed with issues, then it is an invalid
execution. If there was a bug in the changed code or in the
experiment configuration detected, the product team iterates on
a further code change to eliminate the bug. If the experiment
was stopped because the metrics indicated that they were
harming the user experience, then it might be abandoned.

F. Complexity of Experimentation

We observed that running a thorough experimentation pro-
cess on a large scale service is very complex. Figure 1
depicts the experimentation process currently used by Bing.
The complexity of the experimentation process stems from
different aspects. First, while it is possible to rapidly verify
that a deployment does not break the user experience, it takes
time to verify that the user experience is improved or not
degraded by the change. Experiments have to be exposed

to the user groups for at least one week. There are many
reasons for this: one reason is that users interact with the
product differently on different days of the week. While it
is imaginable that users search, for example, may be more
work related on a Monday morning, they would rather search
for social related activities over the weekend. Another reason
is that it is important to have enough users for statistical
validity for trustworthy comparison. Depending on the size
of the change and the prominence of the feature, it takes time
until a large enough number of users interacted with it to
gain enough data for statistical validity. Second, since Bing
has users all over the world and runs on different devices, the
results of the experiment can be country and device dependent.
This segmentation adds complexity to the configuration of the
service. Third, there is a limited capacity to run experiments.
Parallel experiments can be run for each deployment and each
data center. Finally, after running a series of experiments
it needs to be tested how these experiments interact with
each other and whether the combined user experience is still
improved.

IV. STUDY DATA AND METHOD

Our dataset consists of 21,220 experiments that were con-
ducted within Bing over the last 2.5 years. Bing offers the
possibility to study experimentation in inherently different
components of the product. Since these different components
have slightly different procedures to capture and implement
experiments, the following analysis does not capture all ex-
periments for all components within Bing.

A. Experiments

As the experimentation process within Bing emerged and
changed over time, we restricted the analysis to only exper-
iments that were created since the beginning of 2014. Our
dataset comprises historical data of 21,220 experiments run
within 19 components of Bing. We downloaded information
about these experiments through an API offered by ExP. ExP
stores attributes about experiments and stores the exposure
duration of each experiment, which reflects the amount of
time the experiment’s treatment was exposed to end users of
the product. In our analysis, we included only experiments
for which a positive exposure duration was stored (occa-
sionally experiments were created, but never run and hence
the exposure duration is zero). Furthermore, ExP stores for
each experiment a list of people who are responsible for the
experiment, i.e. the owners of the experiments. Finally, we
also retrieved the information showing which experiments are
iterations of one another (i.e. the experiments which belong to
the same experiment group).

Using another API offered by ExP, we downloaded for
each experiment the created scorecards, which include several
metrics measured over the experiment duration. ExP gener-
ates scorecards on a regular basis throughout an experiment.
Hourly and daily scorecards measure the early hours of
experiments and look for serious negative results that indicate
a regression or bug in the product. As time goes on, the system

no experimentation on code change/
experimentation already done

analyse collected metrics

Generally 1 or 2
Weeks

Shipped

start experiment
Experiment

Started
Experiment

Stopped

Metrics Analysed

Valid execution Invalid execution

Decided to Ship
Abandoned
(Gracefully)

Abandoned

Decided to Iterate
Decided to Iterate

(Gracefully)

Daily or
Weekly

Experiment
Designed

Source Code
Changed

Pre-Studycreate mockups

DeployedDeployedcreate changeset
define hypothesis

and metrics

collect more user data

modify source code or
experiment configuration

Fig. 1. Experimentation Process used in Bing.

generates fewer scorecards, because the bugs are typically
detected early on, and the goal is now to determine the validity
of the hypothesis. In our analysis, we considered only the last
scorecard that was created for a particular experiment.

B. Linking Source Code and Experiments
No explicit link exists between experiments and the source

code. To re-establish this link, we analyzed all change sets
within Bing’s source code change history since 2014.

Experiments in Bing are generally controlled through con-
figuration initialization files (INI). As Bing is a large product,
consisting of multiple components and developed by hundreds
of developers, different syntax are used to configure experi-
ments.

In a first step, we filtered all change sets identifying those
that include the editing of at least one INI file. In a second
step, we iterated through all the INI files identified in the
first step and parsed the files using a regular expression to
identify those INI files used to configure experiments. In a
third step, we iterated through all INI files identified in the
second step. We parsed each version of the files using another
regular expression to identify whether the specific file version
includes a configuration for one of the 21,220 experiments in
our data set. Through this method, we created a link between
a specific change set and a specific experiment.

As a result of this analysis, we were able to categorize and
label every change occurring in the Bing development envi-
ronment since 2014 into one of the following four categories:
Matched Change

The change set includes an INI file that was linked to a
particular experiment.

High Probability Change
The change set includes an INI file for which we know at
least one version has been used to configure experiments.

Low Probability Change
The change set includes at least one arbitrary INI file, but

the INI file contains no syntax that implies it is used to
configure experiments.

Other Code Change
The change set includes no INI file.

Due to the variety of complex syntax used in INI files, we
concede that we may missed matched changes. However, these
experiments are represented in the high probability category.

Prior to releasing the code for an experiment, a development
team may iterate the code multiple times. Each code iteration
is referred to as a change set. The change sets prior to the
deployment of the code for an experiment are referred to as
related change sets. To identify how much effort goes into an
experiment, related change sets must be identified.

To identify the related change sets, we use the fact that a file
in Bing has 1.3 iterations per year. As a result, we made the
assumption that if the same file changes within a 5 day period
then we can assume that the change sets containing the file are
related. The small percentage (0.07%) of files that change very
frequently (greater than 15 times per year) are excluded from
the analysis. The following algorithm is applied to identify
and process all related changes. Every change set edited by
Bing since 2014 is processed, starting with the latest change
set and working backwards. For each file in the change set the
process identifies if the file was previously edited within the
5 day time window. If so, the change label for the change set,
that the file belongs to, is altered based on the value of the label
of the initial change set. If the label on the initial change set is
matched change it overrides all other categories. If the label
is high probability this overrides low probability and other
code changes and if it was low probability this overrides other
code changes. Walking backwards through the change sets will
result in a cascading effect, where edits that occur within 5
days of the re-labeled change sets will also be re-labeled.

We also analyzed the identification of related changes over
a time span of ten days. As the association of related changes

remains roughly the same, we decided to use a time span of
5 days in this analysis.

C. Parsing the Experiment Outcome

The experiments for which we could identify one or more
matched changes, allowed us to infer whether the treatment
of the experiment was ultimately deployed to all users. In
particular, we analyzed the sequences of changed lines (diffs)
within the matched changes of an experiment.

Occasionally, the configuration names of experiments are
reused. In this circumstance, we cannot infer whether the
treatment of the experiment was shipped or not. The syntax
for controlling the shipment of experiments’ treatments is
complex. The parser currently does not cover all options.

V. EXPERIMENT CHARACTERIZATION (RQ1)

RQ1: What are the characteristics of experiments
and their development efforts, in terms of time spans,
number of people involved, files and changes in a
large-scale and mature product?

We answer this research question from two perspectives.
First, we analyze how much time an average experiment
within Bing takes (Section V-A). Further, we characterize other
attributes of the development efforts and of experiments, such
as the people who are involved. Due to substantial differences
between components of Bing, we summarize these features
for each component separately in Table I. Second, we analyze
Bing’s change history of the past 2.5 years and compare the
changes that are used for experiments to those changes not
used for experiments (Section V-B).

A. Experiment Life-Cycle

Change sets for experiments are rapidly deployed. The
average time between the first code change for an experiment
and its deployment (last code change observed before the start
of the experiment) is 1.5 days (SD = 1.4). Depending upon
the specific component of Bing, an experiment iteration is
generally exposed for one or two weeks to a user group. On
average, experiments are iterated 1.8 times (SD = 1.8) and
owned by 4.8 (SD = 2.3) people. On average, 1409 different
metrics (SD = 488) are collected for an experiment. Over
an experiment group, we observed 6.4 separate changes to
software files submitted by 2.3 people (SD = 1.7). See Table I
for details on the major Bing components. The analysis of the
captured data and additional code changes between iterations
adds additional time to the execution of the experiments. Our
analysis identified that the experimentation process, from the
start of the experiment to the completion of the last iteration of
an experiment, takes an average of 42 days, including multiple
iterations of one or two week experiment runs. Through
characterizing the life-cycle of experiments, a product team
is enabled to identify potential bottlenecks. Knowing where
the bottlenecks are within the development cycle, enables to
appoint either more resources or synchronize resources in an
improved way.

B. Experimental Activity within Bing

As described in Section IV-B, we categorized each code
change in Bing’s change history into one of the four categories:
matched change, high probability change, low probability
change, and other code change. We assume that many of the
changes that we could not link to experimental activity and
hence were grouped into the other code changes category are
tool-based changes, test related, or bug fixes. Of the changes
that we could link to experimental activity, we grouped 12.1%
into the matched category, 45.5% into the high probability
category and 42.4% into the low probability category. We
observed that changes that are related to the matched and
high probability category include more files than changes
which are categorized into the low probability or other change
category. We observed, on average, 78.9 files (SD = 9.6)
for the matched changes, 122.2 files (SD = 10.3) for the
high probability changes, 37.2 files (SD = 10.4) for low
probability changes, and 11.7 (SD = 8.2) files for other code
changes. See Figure 2.

We also found that changes categorized as matched or high
probability changes have more related changes (on average
2.0 related changes for the matched changes and 1.8 related
changes for the high probability changes) than the low prob-
ability or other changes (on average, 0.6 related changes for
low probability changes, and 0.6 related changes for other code
changes). In summary, our analysis indicates that changes that
we relate to experiments are generally larger in terms of the
files changed and have more related changes.

Bing can now use these results to identify the challenges that
hindered developers from launching experiments. The chal-
lenges identified can then be addressed within the experimental
framework.

Fig. 2. Average number of files for matched, high probability, low probability,
and other code changes.

VI. SUCCESS RATE OF EXPERIMENTS (RQ2)

RQ2: What percentage of experiments are ultimately
deployed to all users?

Our empirical analysis indicates that 33.4% of the ex-
periment groups were ultimately deployed to all users. Our
observation supports Kohavi et al. [15] who reported that
about a third of the experiments improve the metrics they were
designed to improve. For 18% of the experiment groups, our
procedure cannot infer whether the experiment was deployed
to all users, these would require additional analysis to identify
their status (see Section IV-B for details). We also found

TABLE I
CHARACTERISTICS OF EXPERIMENTS FOR THE MAJOR BING COMPONENTS INCLUDED IN OUR ANALYSIS. THE EXPOSURE DURATION IS CALCULATED

OVER ALL ITERATIONS OF AN EXPERIMENT.

Bing component
development efforts experimentation time

contributors # files # changes exposure duration # iterations # owners

Ads 2.2 12.1 4.2 29.1 1.9 6.2
Cortana 1.8 11.7 4.2 17.3 1.6 4.7

Datamining 1.6 9.4 3.9 19.7 1.9 3.1
Engagement 1.7 13.2 4.4 30.0 2.2 4.9

Index 2.0 15.5 4.2 11.5 1.6 3.8
Infrastructure 1.2 5.6 2.2 21.8 3.1 5.0

Local 2.2 14.0 5.2 25.4 1.7 4.2
Multimedia 1.9 18.3 4.1 15.0 1.5 5.3

Relevance 2.6 13.8 7.2 16.3 1.7 4.7
Segments 2.3 9.2 5.3 23.4 1.5 3.9

UX 2.1 15.3 4.9 22.9 2.2 4.9
Windows Search 1.7 16.2 3.0 14.6 1.5 4.8

considerable differences between the components within Bing.
While components related to multimedia deploy 50.7% of the
experiments to all customers, the rate is lower for components
related to the index server (24.9%) for example. The varying
rates of deployed experiments among components in Bing
indicate that different components have different levels of
difficulty to innovate enhancements which significantly im-
proves the user experience. Bing developers mentioned that
they are happy that they do not have a specific target of
successful experiments, enabling them to try out new ideas.
We further observed that the percentage of non-deployed
experiments is increasing over time. One possible root cause
might be that it becomes more difficult to find a niche for
innovation as the product matures. On the other hand, since
ExP facilitates systematic experiments, developers might test
different variants of the same feature in separately captured
experiments. Through our analysis, Bing is enabled to analyze
the metrics that lead to a data-driven decision. Knowing which
metrics are crucial for a particular component, opens the
possibility to further automate a data-driven decision and offer
an improved scorecard interface.

VII. DIFFERENCES BETWEEN DEPLOYED AND
NON-DEPLOYED EXPERIMENTS (RQ3)

RQ3: How do the experiments which are deployed
to all users differ from the experiments which were
not deployed to all users in terms of time spans,
number of people involved, files and changes?

To answer RQ3, we opposed several characteristics that we
captured for the deployed and non-deployed experiments. We
did not observe significant differences for the experiments’
exposure durations, number of iterations conducted within an
experiment group, number of experiment owners, and number
of metrics collected. We found differences in the way the code
is developed for an experiment. A Welch two sample t-test
indicates that experiments for which the treatment was ulti-

mately deployed to all users have significantly more changes
(M = 5.1) associated than treatments of experiments which
have not been deployed (M = 2.9) at the time of the analysis,
t = −15.86, p < .001. Furthermore, significantly more
people contributed these changes for the deployed experiments
(M = 2.0) than for the non-deployed experiments (M = 1.6),
t = −9.05, p < .001. We also found that the code changes
for deployed experiments are overall larger, in terms of the
files that were changed (M = 22.1 for deployed experiments,
M = 14.2 for non-deployed experiments, t = −11.23, p <
.001), the unique files that were changed (M = 14.4 for de-
ployed experiments, M = 10.7 for non-deployed experiments,
t = −7.30, p < .001), and the number of lines that were
changed (M = 690 for deployed experiments, M = 231 for
non-deployed experiments, t = −2.58, p = .01).
We can infer for experiments which were ultimately deployed
to all users that the captured metrics allowed a data-driven
decision. At this point of our analysis, we cannot infer for
the experiments that were not deployed to all users whether
the metrics indicated that the user experience is decreased or
whether there was no significant difference observed between
the treatment and the control. Nevertheless, our results indicate
that the collaboration of more contributors leads to the fruitful
execution of an experiment. To better understand whether the
collaboration of more people causes more files being changed
or whether the need to change more files requires more people
to collaborate, is planned for future work. Understanding the
differences between deployed and non-deployed experiments,
teams may be able to identify which category of experiments
are more likely to be more successful and which category of
experiments may require more monitoring.

VIII. THREATS TO VALIDITY

The external validity of our empirical analysis is threatened
by the analysis of only one project. Because Bing is a mature
large service, our results are not generalizable to less mature

products. Furthermore, we also believe that the experimental
process is more complex for on-premises products. However,
the project which we analyzed comprises several inherently
different components. We tried to mitigate this difference by
considering each component separately. Furthermore, due to
data consistency reasons we limited our analysis to experi-
ments of the past 2.5 years.

The internal validity of our analysis is threatened by the
fact that components within Bing use slightly different ways to
capture, configure and deploy experiments. Bing is a composi-
tion of very large services that use different programming lan-
guages. Further, Bing is developed by hundreds of developers,
who implement source code for experiments in different ways.
Therefore, we were limited in the development of parsers
to link code changes to experiments and to infer whether
experiments have been shipped. Hence, our analysis does not
cover all experiments run within Bing, but presents an analysis
on a subset of Bing’s experiments. Furthermore, our analysis
on the experiments’ life-cycle does not capture the time spent
on designing the experiment and analyzing the gathered user
data. Our analysis is therefore a first approximation of the
actual time needed to conduct controlled experiments in a
large-scale software product.

IX. DISCUSSION

The opportunity to experiment with products drastically
changed the way software is deployed within Bing. Our
empirical analysis showed that experimentation has become
an integral part within the deployment cycle. In the following,
we discuss different aspects of the experimentation process
and our planned future work.

A. Should Experimentation be Done for All Code Changes?

Bing has significantly increased the number of experiments
since 2009 [17]. Further, many people are involved in the
execution of an experiment who spend time preparing and
executing experiments. The experimentation process is now a
substantial part within the deployment cycle. We also observed
that experiments can become a limiting factor of the cycle
time within the deployment cycle, and hence we suggest that
practice as well as research should not only focus on methods
to accelerate the deployment of code changes, but on methods
to identify experiments which are worthwhile to run and on
methods to ensure that the experiment is run without issues.

We observed that generally larger code changes are linked
to experiments. While it is possible to run a controlled
experiment with each kind of change, we conclude that
smaller changes have other priorities than improving the user
experience. As an example, for a bug fix, the most important
issues are to rapidly understand whether the deployed fix
does not introduce further issues and whether the change
fixes the bug. For small code changes, users may be less
likely to significantly react. On the other side of the spectrum,
the difficulty in the experiment design, measurement, and
analysis is substantially increased for large code changes as
many different aspects about the larger change can influence

user behaviors. Therefore, adapting experimentation means
to understand the trade-off between running a controlled
experiment and other means to verify a code change or to
offer different experimentation processes for different kinds of
changes. We believe that the cost of a controlled experiment
could be dramatically decreased for bug fixes, if these changes
could be deployed after a shorter amount of time and do not
have to improve the user experience necessarily. Requiring
a hypothesis for every change is too great an overhead for
small changes, such as big fixes. Therefore, we believe that
an experimentation process tailored to the different kinds of
code changes may be more efficient.

B. Size of the Code Changes.

We observed that code changes which we classified as
matched changes or high probability changes have overall
more development activity associated with them than changes
which we classified as low probability or other changes. This
observation raises the question whether experimentation in
a mature system is only enabled by changes big enough to
cause measurable effects on the end users of the product. On
the other hand, developers may not want to spend additional
time for experimentation if the change is reasonably small.
Hence, we suggest that different experimentation processes
and frameworks should be used for different kinds of changes.
For future work, we plan to investigate further the relation
between bigger releases and the amount of experiments run
and compare these findings to experimentation activity in
a less mature system. Furthermore, we plan to investigate
how continuous experimentation influences the way developers
work.

C. Developers as Data Analysts.

We observed that on average 1409 metrics about the users’
behavior for each version of the product are identified and
analyzed by experimenters. Further, experimentation frame-
works offer to analyze an ongoing experiment multiple times
a day. The collected metrics are not always straight-forward
to interpret, as Kohavi et al. [16] illustrate on five real-world
examples. This difficulty of interpreting the collected metrics
suggests an inevitable shift of traditional development work
to rigorous data analyses. This observation agrees with the
observations of Kim et al. [14] who found that data scientist
are increasingly important within software development teams.
As these data analyses have potential to impact the annual
revenue of a product [16], proper data analyses is of superior
importance. As Lindgren and Münch [21] found out when
interviewing people of different roles in ten software com-
panies, a lack of time and missing expertise were named as
reasons of inadequate data analysis. This lack of data analysis
expertise was also identified for experiments run in a B2B
environment [27]. Hence, the team around the Experimentation
Platform introduced one-day classes in statistics and experi-
ment design, which nowadays even have wait lists [15]. We
plan to further investigate how developers can be supported
in coping with the captured metrics about the user behavior,

for example through improved user interfaces and summarized
views.

D. Success of Experiments.

The success of an experiment can be considered from
different standpoints. In our analysis, we first verified whether
the code change is eventually shipped to all users. We ob-
served that experiments which were shipped are significantly
larger and that more people contributed source code for the
experiment. However, an experiment can also be considered
successful if a data-driven decision of whether to ship or
abandon a code change was enabled and hence a development
team had the possibility to learn more about their users.
In a next step, we plan to analyze this learning value of
experiments and we plan to figure out what the characteristics
of experiments are that enable a data-driven decision.

X. CONCLUSION

The opportunity to experiment with a software product
denotes a radical change in how software is deployed. While
previously every change was deployed to all users, now only
the changes which have a measurable improvement on the user
experience are deployed to all users. We characterized such an
experimentation process employed in a large-scale and mature
product, i.e. Bing. We further analyzed 21,220 experiments
over the past 2.5 years and observed that 33.4% of these
experiments have been deployed to all users of the product.
Our characterization of the experiments and their develop-
ment activities revealed that experiments which are eventually
shipped to all users, have generally more development activity.

ACKNOWLEDGMENT

We would like to thank the Experimentation Platform team
for sharing historical data of experiments and helpful discus-
sions of this work. We also thank the people who reviewed
this paper, in particular the NCSU Realsearch research group,
for providing valuable feedback.

REFERENCES

[1] Experiments - articles & solutions.
https://developers.google.com/analytics/solutions/experiments.
Accessed: 2016-10-21.

[2] Planout a framework for online field experiments.
https://facebook.github.io/planout/. Accessed: 2016-10-21.

[3] B. Adams and S. McIntosh. Modern release engineering in a nutshell –
why researchers should care. In IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering, pages 78–90, 2016.

[4] E. Bakshy, D. Eckles, and M. S. Bernstein. Designing and deploying
online field experiments. In 23rd International Conference on World
Wide Web, pages 283–292, 2014.

[5] J. Bosch. Building products as innovation experiment systems. In
3rd International Conference on Software Business, Lecture Notes in
Business Information Processing, pages 27–39, 2012.

[6] T. Crook, B. Frasca, R. Kohavi, and R. Longbotham. Seven pitfalls to
avoid when running controlled experiments on the web. In 15th ACM
International Conference on Knowledge Discovery and Data Mining,
pages 1105–1114, 2009.

[7] T. H. Davenport. How to design smart business experiments. Harvard
Business Review, pages 69–76, 2009.

[8] A. Deng. Objective bayesian two sample hypothesis testing for online
controlled experiments. In 24th International Conference on World Wide
Web (Companion), pages 923–928, 2015.

[9] A. Deng, Y. Xu, R. Kohavi, and T. Walker. Improving the sensitivity of
online controlled experiments by utilizing pre-experiment data. In 6th
ACM International Conference on Web Search and Data Mining, pages
123–132, 2013.

[10] P. Duvall, S. Matyas, and A. Glover. Continuous Integration: Improving
Software Quality and Reducing Risk. A Martin Fowler signature book.
Addison-Wesley, 2007.

[11] F. Fagerholm, A. S. Guinea, and H. M˙ The {RIGHT} model for
continuous experimentation. Journal of Systems and Software, pages –,
2016.

[12] F. Fagerholm, A. S. Guinea, H. Mäenpää, and J. Münch. Building blocks
for continuous experimentation. In 1st International Workshop on Rapid
Continuous Software Engineering, pages 26–35, 2014.

[13] J. Humble and D. Farley. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Addison-
Wesley Signature Series (Fowler). Pearson Education, 2010.

[14] M. Kim, T. Zimmermann, R. DeLine, and A. Begel. The emerging role
of data scientists on software development teams. In 38th International
Conference on Software Engineering, pages 96–107, 2016.

[15] R. Kohavi, T. Crook, R. Longbotham, B. Frasca, R. Henne, J. L. Ferres,
and T. Melamed. Online experimentation at microsoft. In Workshop on
Data Mining Case Studies and Practice Prize, 2009.

[16] R. Kohavi, A. Deng, B. Frasca, R. Longbotham, T. Walker, and Y. Xu.
Trustworthy online controlled experiments: Five puzzling outcomes ex-
plained. In 18th ACM International Conference on Knowledge Discovery
and Data Mining, pages 786–794, 2012.

[17] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann.
Online controlled experiments at large scale. In 19th ACM International
Conference on Knowledge Discovery and Data Mining, pages 1168–
1176, 2013.

[18] R. Kohavi, A. Deng, R. Longbotham, and Y. Xu. Seven rules of thumb
for web site experimenters. In 20th ACM International Conference on
Knowledge Discovery and Data Mining, pages 1857–1866, 2014.

[19] R. Kohavi and R. Longbotham. Online controlled experiments and
a/b tests (to appear). In Encyclopedia of Machine Learning and Data
Mining, 2016.

[20] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Con-
trolled experiments on the web: survey and practical guide. Data Mining
and Knowledge Discovery, 18(1):140–181, 2009.

[21] E. Lindgren and J. Münch. Software Development as an Experiment
System: A Qualitative Survey on the State of the Practice. 2015.

[22] R. Mason, R. Gunst, and J. Hess. Statistical design and analysis
of experiments: with applications to engineering and science. Wiley
series in probability and mathematical statistics: Applied probability and
statistics. 1989.

[23] D. Mindell. Digital Apollo: Human and Machine in Spaceflight. Inside
Technology Series. 2008.

[24] H. H. Olsson, H. Alahyari, and J. Bosch. Climbing the ”stairway to
heaven” – a mulitiple-case study exploring barriers in the transition
from agile development towards continuous deployment of software.
In 38th Euromicro Conference on Software Engineering and Advanced
Applications, pages 392–399. IEEE Computer Society, 2012.

[25] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover,
J. Holman, J. Micco, B. Murphy, T. Savor, M. Stumm, S. Whitaker,
and L. Williams. Top 10 adages in continuous deployment. In IEEE
Software, to appear. IEEE Computer Society, 2016.

[26] E. Ries. The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses. Crown Publishing
Group, 2011.

[27] O. Rissanen and J. Münch. Continuous experimentation in the b2b
domain: A case study. In 2nd Rapid Continuous Software Engineering,
pages 12–18. IEEE/ACM, 2015.

[28] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer. Overlapping
experiment infrastructure: More, better, faster experimentation. In 16th
Conference on Knowledge Discovery and Data Mining, pages 17–26,
2010.

[29] Y. Xu, N. Chen, A. Fernandez, O. Sinno, and A. Bhasin. From infrastruc-
ture to culture: A/b testing challenges in large scale social networks. In
21th ACM International Conference on Knowledge Discovery and Data
Mining, pages 2227–2236. ACM, 2015.

