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ABSTRACT 

Accurately learning what delivers value to customers is difficult. 
Online Controlled Experiments (OCEs), aka A/B tests, are 
becoming a standard operating procedure in software companies 
to address this challenge as they can detect small causal changes 
in user behavior due to product modifications (e.g. new features). 
However, like any data analysis method, OCEs are sensitive to 
trustworthiness and data quality issues which, if go unaddressed 
or unnoticed, may result in making wrong decisions. One of the 
most useful indicators of a variety of data quality issues is a 
Sample Ratio Mismatch (SRM) – the situation when the observed 
sample ratio in the experiment is different from the expected. Just 
like fever is a symptom for multiple types of illness, an SRM is a 
symptom for a variety of data quality issues. While a simple 
statistical check is used to detect an SRM, correctly identifying the 
root cause and preventing it from happening in the future is often 
extremely challenging and time consuming. Ignoring the SRM 
without knowing the root cause may result in a bad product 
modification appearing to be good and getting shipped to users, 
or vice versa. The goal of this paper is to make diagnosing, fixing, 
and preventing SRMs easier. Based on our experience of running 
OCEs in four different software companies in over 25 different 
products used by hundreds of millions of users worldwide, we 
have derived a taxonomy for different types of SRMs. We share 
examples, detection guidelines, and best practices for preventing 
SRMs of each type. We hope that the lessons and practical tips we 
describe in this paper will speed up SRM investigations and 
prevent some of them. Ultimately, this should lead to improved 
decision making based on trustworthy experiment analysis. 
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1. INTRODUCTION 
Online Controlled Experiments (OCEs), A/B tests, or simply 
experiments are becoming a standard operating procedure in data-
driven software companies [1, 11, 21, 22, 24]. In the simplest OCE, 
two variants of a product are simultaneously exposed to two 
randomly selected groups of users. Correctly executed 
experiments can accurately measure the effect of changes to the 
product on user behavior and key metrics, increase the quality of 
a product, and align the organization around a unifying goal [12, 
22]. These benefits, however, can only be achieved if experiments 
are executed and analyzed correctly. For that, data scientists 
meticulously examine OCEs to rule out any data quality issues 
that could invalidate the results of their experiments [33]. 
Consider for example the following OCE that ran at Microsoft. A 
product team at MSN increased the number of rotating cards on 
the carousel from 12 to 16 (see Figure 1). 

 
Figure 1. The MSN Carousel Experiment. 

The expectation before the experiment was to see an increase in 
the number of times that users click and engage with the carousel 
[8, 29]. This experiment had enough statistical power to detect 
very small changes, user interaction telemetry was correctly 
logged and collected, and the platform on which the experiment 
ran produced trustworthy analysis. Contrary to what the team 
was hoping for based on the learnings from related experiments 
that showed an increase in clicks, this experiment revealed a 
significant decrease in engagement with the cards. Users seeing 
more cards appeared to click less. Based on this result it seemed 
like a bad idea to ship this change. What happened? 
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One clue for this outcome was a data quality warning firing in the 
experimentation platform [28]. This warning indicated an 
unexpected proportion of users in the experiment variants. In 
particular, the treatment group which was exposed to the new 16 
card carousel had fewer users in the analysis compared to what 
was configured and expected based on the experiment set-up. The 
deviations from the configured split were highly statistically 
significant so unlikely to happen just due to chance. [8, 19]. This 
difference is commonly known as a Sample Ratio Mismatch (SRM) 
and prominently surfacing it to experimenters is critical to 
prevent them from making inaccurate conclusions [17].  After 
resolving the issue that was causing the SRM in experiment above 
(see section 5.3 for details), it was found that the change was in 
fact positive and significantly increased the engagement with the 
product.  

An SRM is one of the most useful indicators of many common and 
severe data quality issues in Online Controlled Experiments [4, 5, 
13, 18]. While testing whether an experiment exhibits an SRM is 
straightforward, investigating the root cause can be very 
challenging even for experienced analysts [9]. For example, while 
the SRM warning in the experiment above indicated that 
something went wrong with the experiment, it did not reveal why. 
The ‘why’ was determined through a deep-dive analysis by 
experienced analysts.  

Experimentation trustworthiness issues are like cancer for a 
product. If left ignored, these issues multiply quickly. SRM is a 
good indicator of this problem. While some types of SRMs are 
common (e.g. SRMs due to log processing are highlighted in [4, 
35]), SRM conditions can happen anywhere in the experiment 
lifecycle. Are the experiment variants correctly logging telemetry 
[3]? Are experimenters or users interfering with the experiment? 
These are just a few of the many possible scenarios that analysts 
in our case study companies evaluate during their experiment 
analysis process. As illustrated in section 4, searching for the root 
cause can take weeks, sometimes even months. During this time, 
the experiment owners are paralyzed as the decision on whether 
the new feature is good or bad cannot be conclusively determined.  

In this paper, we describe the common causes for an SRM, discuss 
analysis steps to effectively diagnose each of them and share best 
practices for preventing those that can be prevented. We base our 
findings on case study research [31] at Booking.com, Microsoft, 
Outreach.io, and Online Dialogue. Our main contribution is 
threefold: 

1. We provide a taxonomy of common SRM conditions. 

2. We provide real example experiments that exhibited 
SRM conditions for each of the taxonomy branches. 

3. We share best practices and rules of thumb for detecting 
and preventing SRM conditions. 

While several examples of SRMs were discussed before in the 
literature, to our knowledge this is the first large-scale systematic 
study of common SRM types. 

2. BACKGROUND 
2.1 Online Controlled Experiments 
Online Controlled Experiments, A/B test, or simply experiments 
are widely used by data-driven companies to evaluate the impact 
of software changes (e.g. new features) [11]. OCEs such as the one 
that we introduced in the introduction are used for evaluating 
changes on web sites [15, 16], mobile and desktop apps, gaming 
consoles, social networks [34], operating systems [21] and other 

platforms.  In the simplest OCE, users are randomly assigned to 
one of the two variants: control (A) or treatment (B). Usually 
control is the existing system and treatment is the system with a 
new feature added, say, feature X. User interactions with the 
system are recorded and from that, metrics are computed. If the 
experiment was designed and executed correctly, the only thing 
consistently different between the two variants is the feature X. 
External factors such as seasonality, impact of other feature 
launches, moves by competition, etc. are distributed evenly 
between control and treatment. Hence, any difference in metrics 
between the two groups can be attributed to either the feature X 
or random chance. The latter hypothesis is ruled out using 
statistical tests such as a t-test [6]. This establishes a causal 
relationship between the change made to the product and changes 
in user behavior, which is the key reason for widespread use of 
controlled experiments [11].  

2.2 Online Controlled Experiment Steps 
Every online controlled experiment consists of several steps that 
need to be executed correctly for OCE to be valid. In our previous 
research [14], we described the four key steps in the experiment 
process: (1) Experiment Assignment – the initial stage where users 
are split based on some unique identifier into groups and assigned 
one of the product variations. (2) Experiment Execution – the stage 
where users actually receive a variant based on the earlier 
assignment (e.g. the correct configuration is downloaded to a 
client), the variant is applied, and its usage is being logged. (3) 
Experiment Log Processing – The stage where the telemetry 
generated in the second stage is collected from the client (e.g. 
uploaded from browser storage to some cloud storage) and 
processed (e.g. joined with server logs). (4) Experiment Analysis – 
The final stage where processed logs are analyzed by e.g. filtering 
down to users impacted by the change. The characterization into 
the aforementioned four stages can be derived also by studying 
the architectural and infrastructural descriptions in papers on 
experimentation published by other researchers (see [2, 33, 34]).  
As we will explain later, there are distinct types of SRMs that arise 
in each of the experiment steps presented in this section.  

2.3 Data Quality 
One of the most critical components of experimentation is data 
quality. Practitioners at Microsoft [7, 13, 20], Booking.com [17], 
LinkedIn [4] and other companies frequently report on 
experiments that are at risk of being incorrectly analyzed due to 
various issues with data. One of the most important symptoms of 
data quality issues is the Sample Ratio Mismatch.   

2.3.1 Sample Ratio Mismatch  
Sample Ratio Mismatch, or simply ‘SRM’ is a data quality check 
that indicates a significant difference between expected 
proportions of users among experiment variants (e.g. configured 
before the experiment started) and the actual proportions of users 
observed at the end of the experiment. For example, if a 50/50 split 
is expected between two experiment variants, the ratio between 
the number of users exposed to each of the groups at the end of 
the experiment is expected to be close to 1. While there are many 
data quality issues that could decrease the validity and 
significance of a controlled experiment, Sample Ratio Mismatch in 
most cases completely invalidates experiment results. For 
example, a ratio of 50.2/49.8 (821,588 versus 815,482 users) 
diverges enough from an expected 50/50 ratio that the probability 
that it happened by chance is less than 1 in 500k. To detect an 
SRM, a chi-square test [30] can be used. If the test determines an 



 

 

 

unlikely difference between the configured and observed 
numbers, analysts must investigate the root cause. 

2.3.2 Diagnosing Sample Ratio Mismatches 
Several specific SRM root causes were extensively studied by 
researchers and practitioners. For example, Chen et al.  at 
LinkedIn [4] exposed SRMs that happen during a triggered 
analysis of an experiment and shared the lessons learned while 
building a toolkit for diagnosing this type of SRM. They revealed 
that about 10% of triggered analysis at LinkedIn have an SRM. A 
triggered analysis is a type of experiment evaluation where only 
the users that were affected by the change (those in the treatment 
group that were exposed to the treatment) and the users that 
would have been affected if they were exposed to it 
(counterfactual - the users in the control group) are included in 
the analysis process. Here, a wrong counterfactual or triggered 
condition can cause an SRM. Next, Zhao et al. at Yahoo [35] 
recognized SRM cases due to incorrect treatment assignment, lost 
telemetry and issues in the design of the trial. In our prior research 
at Microsoft [10], we shared example SRMs that happened in the 
data processing (cooking) phase like the bot example presented in 
section 5.3, as well as in the analysis phase due to wrong 
triggering or filtering criteria.  

Lessons learned from expanding experimentation to tens of 
thousands of experiments yearly and to devices that span beyond 
web sites and mobile applications taught us to seek for root causes 
beyond the obvious suspects presented in the prior literature. For 
example, SRMs can also be caused by ‘power users’ modifying 
product telemetry, by experimenters that manipulate experiment 
variants, by systems that deploy experiment variants, and so on. 
This can be very challenging and costly, hence the need to study 
the common SRM scenarios and provide a topology to improve 
our capacity to identify root causes.  

3. RESEARCH METHOD 
To conduct this research, we collected and analyzed both 
qualitative and quantitative data from four case companies - 
Microsoft, Booking.com, Outreach.io, and Online Dialog. We used 
a mixed method approach: a combination of qualitative and 
quantitative methods is commonly used in case study research 
[31] to study a problem from different angles and to synthesize 
the available data [26]. The goal of our study was to learn what 
the common SRM types are, how analysts diagnose them, and 
whether some of the SRMs can be prevented. To learn about these, 
we conducted four types of data collection and analysis efforts. 
First, we reviewed recent and related literature for reported SRM 
scenarios. Second, we collected and analyzed qualitative data by 
examining internal documentation available to the authors of this 
paper. Third, we conducted 14 interviews with experienced 
analysts and developers working at the case companies based on 
a set of semi-directive questions. The questionnaire itself is 
available at [32]. Finally, we performed a quantitative analysis of 
the historical data from previous controlled experiments that ran 
at our case companies to get an insight on what common and 
severe SRM cases really are. In total, the sample size of our 
historical data is over 10000 OCEs.  

4. SRM LEARNINGS AND INSIGHTS  
In this section, we provide several learnings obtained during this 
study. Note that this is not intended to be a comprehensive list, 
but rather a short discussion confirming the importance of SRMs. 

4.1 SRMs are a Common Data Quality Issue 
Recent research contributions from large scale companies such as 
LinkedIn [4] and Yahoo [35], as well as our own research [8] 
confirm that SRMs are common at large scale experimentation. 
During this study, and through quantitative analysis of 
experiments conducted within the last year we identified that 
approximately 6% of experiments at Microsoft exhibit an SRM. We 
illustrate this in Figure 2 where we show the variation of the SRM 
ratio among five products that run experiments at a large scale 
(ordered in descending order based on the number of experiments 
per product). Figure 2 reveals that this is an important problem to 
address as it happens frequently – for example, a product running 
ten thousand experiments in a year can expect to see at least one 
SRM per day.  

 
Figure 2. Ratio of OCEs with an SRM at Microsoft. 

4.2 SRMs Indicate Invalid Analysis 
Each of the experienced analysts confirmed that (1) they are 
regularly exposed to SRMs and have to identify their root-causes, 
and that (2) SRMs are a critical data quality issue that needs to be 
investigated and resolved before a conclusive decision on the 
result of an experiment can be reached. In particular, SRMs cause 
a selection bias that invalidates any causal inference that could be 
drawn from the experiment. If there is a selection bias in 
treatment or control sample, then the observed metric movements 
may be due to the selection bias and cannot be attributed to the 
treatment effect. Below are two quotes from our interviews that 
affirm these observations: 

“I can recall hundreds of SRMs. We consider it one of the most 
severe data quality issues we can detect.” 

 

“I am working on resolving an SRM just now. The SRM is 
critical. The analysis is completely untrustworthy.”  

4.3 SRMs are Challenging to Root-Cause 
Analysts at our case companies report a large variance for the time 
that it takes to investigate an SRM, and many components of the 
experiment in which SRMs could happen. The time to diagnose an 
SRM can span from minutes to months, and SRMs can happen due 
to issues with experiment design, the randomization process, 
variant deployment, data logging, data collection, data cooking, as 
well as due to data analysis conditions.  

“Most of the time I spend a day or two to resolve an SRM. I 
would look at the deep dive, look at the correct filter 

condition etc. If it is a browser related SRM it may take me 
a week, if it is not browser related it can take me months.” 

 

The quotes above illustrate the high complexity and effort needed 
to investigate an SRM throughout the experiment. We expand on 
the individual components in section 5 in greater detail.  



 

 

 

4.4 SRM Indicators make Diagnosis Effective 
While a simple statistical test can be used to indicate whether 
experiments has an SRM or not, it cannot provide enough clues to 
experimenters on what the root cause may be. To make the 
analysis efficient, analysts at our case companies employ 
detectors that help them in the SRM investigation process. These 
detectors span from specialized tools for investigating individual 
segments of users or time slices of an experiment, as well as 
specialized data quality metrics that can be used as leading 
indicators of a root cause of an SRM. We illustrate this finding 
with example quotes next: 

“My most common tool is looking at the chart of assignments 
to treatment and control over time, at a fairly low 

granularity, e.g. 1 hour. The differences either in the beginning 
or in the middle of the experiment indicate the time of SRM.” 

 

“We have created a bunch of data quality metrics that can 
guide us. For example, we have a metric called a proportion of 

users with 0-page views. If we change the rate in which 
people click on the home page you will see that the 
proportion of users with 0-page views goes up.” 

4.5 Some SRMs Can Be Prevented 
While avoiding SRMs completely is not feasible in practice, 
certain types of SRMs can be prevented. Simple SRMs caused by 
e.g. redirects or filtered conditions can be prevented by educating 
experimenters on designing their experiments more correctly. For 
example, experiments can redirect both control and treatment 
variations of a web page when a redirection in one of them is 
needed, they can also select a broader triggering condition, 
prevent humans from interfering with experiment variants, and 
so on. We illustrate this with quotes below and provide a more 
comprehensive list of preventive actions in section 5. 

“Many SRMs were caused by a human intervening into the 
experiment and unknowingly breaking it. This could be 

prevented by introducing controls that show warnings or block 
users from making changes to running experiments.” 

 

4.6 SRMs Can Have a Positive Cause 
While most SRMs occur due to issues in one or more of the 
experiment stages, some SRM can be an indicator of positive 
treatment behavior. For example, when the load speed of the 
treatment variant is improved, the likelihood of the load event 
being logged increases. Similarly, if the treatment variant 
increases engagement of the users with the product (for example, 
users are forced to click on two items as opposed to only one in 
control) – the likelihood of losing both events during telemetry 
collection is smaller compared to only losing the single event.  

“If the treatment is getting us to recover additional users in 
the logs it almost always means that it made some performance 
improvements to the website. So, these are wins!” 

The findings and example data in this section are only a small 
subset of the knowledge that we constructed about SRMs during 
this study. In the next section, we provide an overview of the 
common SRM types we inferred from this data. 

5. FIVE COMMON TYPES OF SRMs 
In this section, we provide an overview of the common SRM types 
and a taxonomy revealing the different categories of SRMs based 
on the stage of experiment where they appear. For each of the 
SRM types, we first provide an example experiment that resulted 

in a puzzling outcome. Next, we explain why the experiment 
exhibited an SRM and provide a general understanding of the 
scenario. Finally, we discuss how to detect and prevent the SRM 
scenario where applicable. We summarize all the common causes 
with a taxonomy on Figure 5 in Section 5.6. 

5.1 Experiment Assignment SRMs 
Experiment. For every A/B test, it is a best practice to compute 
results for the pre-period before the test started and confirm that 
a random split of users into two groups does not cause a large 
difference in key metrics. If it does, then the same metric in the 
A/B test period would carry over some of that bias.  

During an experiment on MSN.com webservice, the team 
observed an SRM in one such A/A test. How can an A/A test have 
an SRM? 

Outcome. Further investigation revealed a bug in the experiment 
assignment service. The experiment assignment service used a 
hash function to randomize users into one thousand buckets, each 
bucket representing 0.1 percent of users. For each experiment, the 
experiment owners define how much user traffic they want to 
expose each variant in the experiment to, which translates into a 
specific number of buckets to assign to control and treatment. In 
this case, there was a bug in the experiment assignment service 
where the control variant was assigned one less bucket than the 
required number of buckets. A 50/50 test would incorrectly be 
setup as a 49.9/50 split, which is not necessarily an obvious issue.  

Generalization. Experiment assignment service is one of the 
fundamental components of an experimentation platform [21]. 
There are three main requirements for this component. First, end 
users must be equally likely to see each variant of an experiment 
(assuming a 50-50 split). Second, repeat assignments of a single 
end user must be consistent i.e. the user should be assigned to the 
same variant on each successive visit to the product. Third, when 
multiple experiments are run, there must be no correlation 
between experiments. An end user’s assignment to a variant in 
one experiment must not have effect on the probability of being 
assigned to a variant in any other experiment.  

Detection. Violation of any requirement can cause an SRM. 
Problems in the experiment assignment service would usually 
cause multiple experiments to have an SRM.  In our example 
above, the first condition was violated. Unstable user ids can cause 
violation of the second requirement and may lead to an SRM in 
certain situations. The third requirement can be violated in more 
subtle ways. For example, it is important that an experiment 
assignment is not correlated with the experiments that are 
running alongside the experiment, or with the experiments that 
ran before. If a treatment variant of an experiment is particularly 
good (or bad) then it may affect the re-visit rate of users during 
the time the experiment is running and may have a carryover effect 
even after the experiment stops. If this experiment’s assignment 
is correlated with another experiment’s assignment, then it may 
lead to an SRM.  

Prevention. In many cases experiment variant assignment is 
done by hashing the user ID. With different seeds, hashing libraries 
like MD5 lead to hashing functions that are independent of each 
other. If the experiment assignment service is picking a seed at 
random from a list of seeds, it is important to make sure that there 
is a very large number of seeds to ensure no two experiment 
assignments are correlated. For 365 different seeds, you only need 
around 23 experiments to have a 50% chance of at least one pair 
of experiments sharing a seed. This is also referred to as birthday 



 

 

 

paradox [27]. Further it is important to change the list of seeds 
used over time, or else correlation in user behavior can build up 
for users who are assigned to the same bucket by a hashing 
function. In some cases, it is essential to make sure that 
experiment assignment of an experiment is not independent of 
another experiment but rather exclusive of another experiment. 
When variants in two different experiments interact with each 
other, randomizing these experiments independently may cause 
an SRM. For instance, if the application crashes when a user is in 
treatment for two different experiments together and these two 
experiments are randomized independently of each other, then it 
may lead to an SRM due to telemetry loss. To avoid an SRM in this 
case, no user should be exposed to both experiments at the same 
time i.e. experiment assignments are exclusive of each other. This 
can be achieved by using a separate population for each 
experiment or by running experiments in different time frames.  

5.2 Experiment Execution SRMs 
Experiment. The team at Skype recently ran an OCE aimed at 
improving audio quality of calls. Varying network conditions are 
the largest driver of poor audio quality experience in voice over 
IP (VoIP) calling applications such as Skype. Dynamically 
adjusting buffering parameters can help improve audio quality. 
However, there are multiple buffering parameters, and their 
optimal setting may depend on a variety of network 
characteristics. The treatment variant used a context-based 
machine learning (ML) model to set the buffering behavior of the 
received audio stream. The control consisted of a fixed parameter 
used for all call conditions. The ML algorithm used an online 
system to learn the buffering parameters across contexts by 
trading off playout delay and distortion.   

Outcome. The team anticipated an improvement in audio metrics 
by using a context-aware parameter value compared to a fixed 
setting. Instead, they found that the experiment resulted in a 
significant increase in audio distortion and playback delay. The 
randomization unit of this experiment was a session (call). The 
experiment analysis system collected 30% less sessions compared 
to the control group, triggering an SRM alert.  

Explanation. Upon investigation it was revealed that the root 
cause of the Skype experiment was an asynchronous refresh of 
the experimentation configuration in the middle of a session. The 
findings were based purely on systems metadata. While the 
updated configuration was not honored in the middle of the 
session (by design), the in-memory variable tracking the variant 
ID was getting updated due to a bug. As a result, the 
experimentation log was recording and reporting the incorrect 
variant ID at the end of the session. Around 30% of the logs 
reported as if a treatment never started as the treatment. After 
detecting this issue, the team could evaluate the experiment for a 
subset of the population – the sessions that did not encounter a 
configuration refresh in the middle of a session.  

Generalization. The root cause above can be classified into a 
category of SRM scenarios that we label – Experiment Execution 
SRMs. This scenario consists of three main categories: (1) SRM’s 
due to Variant delivery behavior (e.g. starting variants at different 
times), (2) SRM’s due to Variant execution behavior (e.g. due to 
delayed filter execution which targets populations based on 
complex features that are only known during the experiment 
execution), and (3) SRM(s) due to Telemetry generation behavior. 
For the latter, there are several root-causes. First, experiments not 
redirecting all variants of a web page may have an SRM as some 
redirects may fail. Second, if new telemetry is added to the product, 

the likelihood of receiving at least one event back from one-time 
users increases, which typically results in observing more users in 
that variant. Third, if the treatment degrades performance of a 
product, an SRM can happen as users have more time to exit the 
product before the logs are generated. In contrast, improved 
product performance can give telemetry generation component 
more time to generate and send logs, frequently resulting in 
observing more users in the faster variant.  

Another common SRM point in this stage is is with first run 
occurrences. SRMs can happen in first run experiments whenever 
one variant increases the engagement of users with the product 
(e.g. a variant has a bug that only engaged users discover), if the 
treatment changes the order in which its components are loaded 
(e.g. users exit the product before the telemetry is generated, or if 
a variant has a bug and crashes (see OneNote experiment in [12]). 
Logs from a faster or crashing variant will be delayed or, worse, 
may never be generated and sent for processing. A similar 
observation can be seen with experiments that make users more 
engaged with the product (e.g. they make more clicks). In such 
experiments, the likelihood of transmitting at least one log is 
higher, reducing telemetry loss rate and potentially resulting in 
an SRM with more one-time users.  

Furthermore, to process and report on the results of an experiment 
the system needs to collect telemetry from all places where the 
experiment was executed. Since the experiment may be executed 
on several physical devices, data may be lost in transport to a 
central processing pipeline. This is especially likely to occur in 
cases where telemetry is generated on third party devices, such as 
cell phones or in browsers. For example, threads may be closed or 
paused by the client operating system to save battery power or 
network may be unreliable or even entirely disconnected during 
experiment execution. There are many ways in which telemetry 
may go missing between a client and the experiment system. 
When a treatment affects the rate at which data goes missing an 
SRM may be the result. For example, if the treatment is a more 
promising compressing algorithm that uses less bandwidth to 
achieve the same result, the probability of telemetry loss in the 
collection may decrease as a side effect of the treatment. 

Detection. Finding the root cause of an SRM in the Experiment 
Execution stage is far from trivial. One way to diagnose the exact 
root cause is to have data quality metrics measuring telemetry 
loss, product performance metrics measuring the speed and 
reliability of actions, and engagement metrics measuring users’ 
activity. On Figure 3 below, we provide an example alert from 
Booking.com illustrating one of the data quality metrics (counting 
the number of warnings) and a warning revealing that the 
proportion of users between the variants is not as expected.  

 
Figure 3. Alert detecting telemetry loss at Booking [23]. 

For more details on diagnosing SRMs in this stage see [13]. Note 
however, that sometimes-advanced approaches may be needed to 
identify the exact root-cause. For example, in the Skype audio 
experiment, the team built a classifier to detect when the 
algorithm’s output was invalidated (class=1) by the telemetry 
system and when it was validated (class=0). The algorithm was a 
random forest model and looked at the most discriminative 



 

 

 

features. By using this classifier, they found that the top features 
were all related to the session duration. The longer the session, 
the more susceptible it is to configuration refresh. This finding 
gave the necessary hint to trace it back to the experimentation 
configuration refresh. In general, the team finds this approach of 
using a feature difference between the two classes to be quite 
helpful in finding clues regarding the source of the SRM when the 
cause is not immediately obvious.  

Prevention. Systemic SRMs (e.g. like the one with Skype 
experiment above) can be prevented by tracking the telemetry 
reliability and evaluating any bias between control and treatment 
variants  [13] . The telemetry loss metrics will not help prevent 
experimental design SRMs – these SRMs should be prevented 
during the experimental design phase and it requires a careful 
understanding and evaluation of whether the variant would 
change the underlying population between control and treatment. 
Our overall recommendation to prevent some of these SRMs is to 
introduce first telemetry signals, which should fire before any 
other code in the product executes. This helps register user’s 
presence in a more reliable way. First signal, however, should be 
used in conjunction with other data quality metrics to avoid 
making any biased conclusion in situations with data loss.  

5.3 Experiment Log Processing SRMs 
Experiment. To explain this scenario, we return to the 
experiment increasing the number of rotating cards on the 
carousel from 12 to 16 described in the introduction of this paper.  

As explained earlier, an increase in the number of times that users 
click and engage with the carousel was expected, but the 
controlled experiment revealed a significant decrease in 
engagement with the cards instead. Crucially, the treatment group 
which was exposed to the new 16 card carousel had less users in 
the analysis compared to what was configured and expected 
during experiment setup, triggering an SRM warning. How did 
this happen? 

Outcome. A deep-dive analysis by experienced analysts revealed 
that during the data processing phase, the most engaged users in 
the treatment group were being classified as computer bots and 
removed from the experiment analysis by an algorithm that scans 
for bot activity. Some users in the treatment engaged with the 
carousel cards so much that they crossed the engagement 
threshold used in the bot detection algorithm. After accounting 
for the bot classification results, the results were flipped and the 
correct decision to ship the feature was made. 

Generalization. We classify SRMs caused by problems during 
log processing, such as this example, into a third category dubbed 
Experiment Log Processing SRMs. In this stage, most SRMs 
happen due to issues caused by the way the data is processed, or 
“cooked”: it is transformed from raw telemetry into summary 
statistics on various levels (session level, user level). For that, the 
data is aggregated, joined, filtered or summarized. Automation of 
that process might fail, for instance leaving blanks in the data that 
goes missing. Removal of bots during the cooking phase based on 
post-treatment observations can lead to SRM when treatment 
affects the bot detection system such as in the example described 
above. Other examples of SRM caused during this phase include 
incorrect joins resulting in silently dropping data points from the 
analysis. Some of these issues could be considered simply bugs or 
bad experiment design, but often their impact is magnified when 
they result in SRM depending on the nature of the treatment. 

Many of the problems that fall into Log Processing can be 
considered as “missing data” problems. The impact of the missing 
data on the analysis depends whether the data is missing because 
of a transient issue happening after data collection, and thus by 
repeating the cooking process maybe the data can be recovered. If 
data is missing because it was not collected at all, it is often 
impossible to resolve the issue without repeating the entire 
experiment. Conversely, if data is missing because of bad joins, 
filtering, or due to a delay in telemetry transmission, then it may 
be possible to repeat the cooking process after the problem has 
been fixed. However, this will depend on system architecture, as 
it may not be possible to repeat the cooking process at all in 
stream processing systems where the necessary raw data is not 
stored long enough. 

Detection. One method for detecting issues related to collection 
and cooking is described by Kaufman et al. [15]. If there are two 
or more distinct data collection and cooking pipelines it is very 
unlikely that telemetry collection or telemetry cooking issues are 
identically replicated in all pipelines. Simply comparing the 
summary statistics resulting from different pipelines will help 
identify when SRM is likely caused. Further inspection of different 
parts of the pipelines can help hunt down the exact root cause. 
Another good practice for detecting SRMs in Log Processing is to 
implement monitoring of the size and types of log records that get 
excluded from the analysis (e.g. by monitoring ‘users’ filtered out 
as bots). 

Prevention. Data collection issues can never be avoided entirely. 
As they are especially prevalent when dealing with third party 
systems one potential solution is to ensure that users are not 
exposed to treatment before they are triggered into the 
experiment on a local system. For example, by ensuring that 
mobile devices require explicit confirmation from the experiment 
platform that a user has been enrolled into the experiment (see 
First Signal in 5.2 prevention), or by automatically triggering users 
into the experiment when experiment configuration is sent to 
their device, even when it is not yet known whether they will be 
exposed at all. 

Many problems that occur during cooking could be described as 
post-treatment selection effects. Filtering out bots based on data 
generated after treatment exposure can be problematic when 
treatment affects signals used by the bot detection system. To 
prevent these kinds of issues, the cooking process should ensure 
that no post-treatment data is used for filtering purpose. For 
example, at Booking.com, data processing pipelines determine 
user attributes, such as their bot detection status, at first exposure 
to the experiment and disallow changes after this point (for that 
experiment). This way, post-treatment selection issues are 
entirely avoided. 

5.4 Experiment Analysis SRMs 
Experiment. Microsoft Teams recently ran an experiment testing 
whether skipping a First-Run Experience (FRE) page affected user 
activity. An FRE is the page that users see when they open the 
product for the first time. Triggered analysis was applied for the 
users who saw FRE based on the events fired when the control 
users saw the FRE page, or the treatment users were expected to 
see it.  



 

 

 

Outcome. There were more users in treatment variation in the 
triggered scorecard, while no SRM appeared in the non-triggered 
(aka standard) analysis that includes all users of the product.   

Explanation. To save network communication, the client sends 
out the events in batches. The old design took longer to load, 
which lead users in control to quit earlier. As a result, the 
probability that the data logs that indicate the visibility of the old 
design being lost was higher. The main finding was that the 
trigger condition can’t cover all the eligible users for the analysis. 

Generalization. The SRM issue above falls into the category of 
Experiment Analysis SRMs. In this stage, telemetry filtering is the 
main root cause, which frequently happens because of incorrect 
configuration of analysis or incorrect set up of counterfactual 
logging. Incorrect triggering or filtering condition is another 
common case. Another example is a situation that a feature is 
displayed to users in treatment only, but the counterfactual 
logging for users in control is missing, making it hard to drill-
down.  

Detection. If no SRMs happen with non-triggering or non-
filtering analysis, it indicates that the root cause lies with the 
triggering or filtering analysis process. For example, to solve the 
problem in the Microsoft Teams experiment presented earlier, the 
team needed to configure the analysis based on the events with a 
relaxed condition that happened a few steps before the change 
with the new design. They determined users’ eligibility in the 
triggered analysis to see the FRE page based on events logged 
immediately after the users log in. Zhao et al. [35] introduced a 
method of calculating the cumulative sample size from the very 
beginning of experiment to diagnose whether starting time point 
lead to SRM. Chen et al. [4] mentioned that computing SRM ratios 
for first time users and return users also helped identify the effect 
of retention changes. Missing data from a variant in the filtering 
analysis indicates the condition is invalid or counterfactual 
logging is missing.  

Prevention. To prevent Telemetry Filtering SRMs, we 
recommend starting the analysis from the beginning of the 
experiment. If it is hard to balance sample size with the triggering 
or filtering condition, try relaxing the condition to include a wider 
range of users. For example, generate analysis for users who have 
seen a view page instead of users who have taken actions on the 
page, when the later condition can cause bias. Ideally, implement 
a framework to deal with common counterfactual logging 
scenarios, such as apply the same mechanism for counterfactual 
logging when display new view pages or new elements on a page. 

5.5 Experiment Interference SRMs 
Experiment. In one of the experiments at Microsoft Store 
Homepage and Microsoft Homepage, the team evaluated the 
impact of the page redesign (see Figure 4 for example screenshots 
of two variants). The experiment had an SRM despite being 
designed correctly, the variants logging the correct data, and all 
the other root causes were dismissed. For some reason, however, 
there were more users in the control variation than expected.  

Outcome. After a deep-dive analysis, the team learned about a 
human interference with the experiment variant. Some users were 
forced into one of the variants by a search engine campaign which 
had a misconfigured URL pointing directly to the variant (as 

opposed to the product). The solution to resolve the particular 
SRM was simple – to get an insight into the results, the team 
needed to segment the affected users out of the analysis and 
provide experiment results for the users that were not forcefully 
assigned. In most cases, however, rerunning the experiment will 
be necessary. 

Generalization: The root cause above classifies into a category 
of SRM scenarios that we label – Experiment Interference SRMs. 
This scenario consists of two categories: (1) SRMs due to Variant 
Interference - these happen due to an involvement of an 
experimenter or the actual end user in the experimentation 
process. The example above was an example of an experimenter 
interaction in placing users from a search engine campaign into 
one of the experiment variants. Many products have hidden way 
to "force" a specific variant experience using config strings or URL 
parameters for debugging purposes which, if not used correctly, 
can cause an SRM. Another example experienced by our case 
companies is a situation where an experimenter would pause one 
of the variants for some time during the experiment to perform a 
change, or a situation where only some of the variants are 
ramped-up.  

 
Figure 4. Microsoft Store and Homepage Experiment. 

The second category are (2) SRMs due to telemetry interference – 
These are cases where users of the product actively interfere with 
the product variation in a way that results in an SRM. For example, 
in one experiment at one of our case companies, users actively 
manipulated the product telemetry by submitting an injection 
attack through one of the telemetry fields. This caused a severe 
SRM in the variant that the user was conducting the attack. 

Detection. To detect SRM’s due to experimenter’s involvement, 
we recommend establishing monitoring of activities with the 
platform and alerting whenever a variant is changed during 
experiment execution. To detect forceful assignment to 
experiment variants, monitor the assignment of users over time 
and alert the experimenter on large and significant differences.  

Prevention.  This type of SRMs can effectively be prevented by 
notifying the experimenters about the consequences of their 
actions. On Figure 5, we provide an example alert from an 
experimentation platform used at Outreach.io that notifies the 
experimenter about the consequences of stopping a running 
variant during an experiment.  

To prevent Interference SRMs we recommend preventing 
experimenters from using direct assignments to experiment 
variants outside of certain network (e.g. only allow team members 
to be directly assigned a variant), alerts in the experimentation 
platform that notify experimenters about the consequences of 
their actions, and to monitor the telemetry that is being collected 
for unusual values (blanks, injection strings, etc.). 



 

 

 

 
Figure 5. Taxonomy of common SRM types and root-causes. 

5.6 SRM Taxonomy 
We summarize the common SRM causes that we discussed so far 
on Figure 6.  In total, we recognize 25 distinct causes of SRMs and 
categorize them based on the stage of the experiment in which 
they appear. We colored the root-causes that likely indicate a 
systematic widespread impact (e.g. impacting multiple 
experiments) with *. In the next section, we discuss the rules of 
thumb for classifying the SRM that you experience and 
determining the root cause. 

6. Rules of Thumb for SRM Investigations  
In the previous section, we provided the SRM taxonomy and 
example experiments that exhibited an SRM. With this 
contribution, practitioners can increase their awareness of 
common SRMs and learn about preventive measures employed by 
our case companies. In this section, we briefly discuss ten rules of 
thumb for a quick diagnosis and categorization of most SRMs. 
This will help practitioners narrow down the root cause and 
categorize the SRM.  

1. Examine scorecards: If SRM occurs in a subsample of users 
(e.g. in a triggered/filtered scorecard) and there is no SRM in 
the standard scorecard with all users in the experiment, it is 
likely that the trigger/filter condition is wrong in experiment 
analysis. Start by relaxing the filter to capture a wider 
audience and examine at what point the SRM problem occurs. 

2. Examine user segments: If the SRM occurs in only one user 
segment, it is very likely that the cause of the SRM is localized 
to that segment. For instance, if the treatment is relying on 
some advanced browser capabilities like 256-bit encryption 
[25], the segment with older version of the browser might 
have an SRM.  

3. Examine time segments: If the evidence for SRM is 
strongest on day 1 of the experiment, and you do not observe 
the SRM after a longer time duration, the SRM is likely due to 
time related factors like caching during experiment execution, 
or delayed start of a variant in the experiment.  

4. Analyze performance metrics: If there is a large 
degradation in key performance metrics like time to load or 
crashes in the scorecard that has an SRM, then it is likely that 

the sign of this difference is real and is causing the SRM. For 
instance if the treatment increases page load time, then you 
may not get telemetry from some users who get the worst 
page load time, but you will still see regression when 
comparing treatment with control for those users for whom 
you do have telemetry.  

5. Analyze engagement metrics: If average engagement per 
user is higher in treatment compared to control, then it is 
likely that the root cause of the SRM is affecting less engaged 
users more, and vice-versa. For instance, in the case of Skype 
SRM example the root cause was due to a system bug 
impacting sessions with longer (more engaged) duration.  

6. Count frequency of SRMs: If many disparate experiments 
have an SRM, then it is likely that the root cause of the SRM 
is a systemic issue due to one or more factors from the 
taxonomy with a systematic widespread impact (marked *).   

7. Examine AA experiment: If an A/A experiment has an SRM 
then it is likely that one of the widespread factors is the root 
cause of the SRM, or the experiment is not actually an AA – 
for instance if you add extra telemetry in one of the variants 
then it is not an A/A as that variant might recover more users. 

8. Examine severity: If you observe a very large or very small 
sample ratio, then the root cause is likely to be affecting most 
users in the control or treatment, respectively.  For example, 
if there are no users in one variation, then it is likely a 
telemetry issue where control variant or a trigger condition in 
control is not getting logged properly. 

9. Examine downstream: If your pipeline allows introspection 
of data at different collection and aggregation stages (e.g. in 
steps before the final scorecard), then comparing results at 
different stages may provide clues as to where the SRM 
originates. 

10. Examine across pipelines: If your experimentation system 
has two data pipelines, then compare the results of both 
pipelines. See [15] for more details. Also, examine debugging 
logs containing records that could not be merged in the 
pipelines. Differences in these point to log processing related 
SRMs.  



 

 

 

7. CONCLUSION 
The biggest driver of incorrect conclusions when comparing two 
datasets is bias. SRMs are a strong indicator of such bias, are 
common in large scale experimentation, and are difficult to 
diagnose and resolve. They consume analyst time, attribute to 
flawed conclusions, reduce confidence in experimentation, and 
impede the progress of product development. In this paper, based 
on our experience of running OCEs in four different software 
companies in over 25 products used by hundreds of millions of 
users, we derived a taxonomy for the types of SRMs and general 
rules of thumb for diagnosing their root cause. We hope that the 
lessons learned and practical tips for diagnosing each of them will 
raise awareness of this important topic. This should prevent some 
of the SRMs from happening as companies mature their 
experimentation practices as well as speed-up their resolution.  
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