
This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the KDD’19.

Diagnosing Sample Ratio Mismatch in Online Controlled
Experiments: A Taxonomy and Rules of Thumb for Practitioners

Aleksander Fabijan, Jayant
Gupchup, Somit Gupta, Jeff

Omhover, Wen Qin
Microsoft Corporation

Redmond, USA

{alfabija, jayagup, sogupta, jeomhove,
weqin} @microsoft.com

Lukas Vermeer

Booking.com
Amsterdam, Netherlands

lukas.vermeer@booking.com

Pavel Dmitriev

Outreach.io
Seattle, USA

pavel.dmitriev@outreach.io

ABSTRACT

Accurately learning what delivers value to customers is difficult.
Online Controlled Experiments (OCEs), aka A/B tests, are
becoming a standard operating procedure in software companies
to address this challenge as they can detect small causal changes
in user behavior due to product modifications (e.g. new features).
However, like any data analysis method, OCEs are sensitive to
trustworthiness and data quality issues which, if go unaddressed
or unnoticed, may result in making wrong decisions. One of the
most useful indicators of a variety of data quality issues is a
Sample Ratio Mismatch (SRM) – the situation when the observed
sample ratio in the experiment is different from the expected. Just
like fever is a symptom for multiple types of illness, an SRM is a
symptom for a variety of data quality issues. While a simple
statistical check is used to detect an SRM, correctly identifying the
root cause and preventing it from happening in the future is often
extremely challenging and time consuming. Ignoring the SRM
without knowing the root cause may result in a bad product
modification appearing to be good and getting shipped to users,
or vice versa. The goal of this paper is to make diagnosing, fixing,
and preventing SRMs easier. Based on our experience of running
OCEs in four different software companies in over 25 different
products used by hundreds of millions of users worldwide, we
have derived a taxonomy for different types of SRMs. We share
examples, detection guidelines, and best practices for preventing
SRMs of each type. We hope that the lessons and practical tips we
describe in this paper will speed up SRM investigations and
prevent some of them. Ultimately, this should lead to improved
decision making based on trustworthy experiment analysis.

CCS CONCEPTS
• General and reference → Experimentation • General and reference →

Empirical studies • Computing methodologies → Causal reasoning and
diagnostics

Keywords

A/B Testing, Online Controlled Experiments, Sample Ratio
Mismatch, SRM

ACM Reference format:

Aleksander Fabijan, Jayant Gupchup, Somit Gupta, Jeff Omhover, Wen
Qin, Lukas Vermeer, and Pavel Dmitriev. 2019. Diagnosing Sample Ratio
Mismatch in Online Controlled Experiments: A Taxonomy and Rules of
umb for Practitioners. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’19), August 4 -
8, 2019, Anchorage, Alaska. ACM, New York, NY, USA, 9 pages.
hps://doi.org/10.1145/3292500.3330722.

1. INTRODUCTION
Online Controlled Experiments (OCEs), A/B tests, or simply
experiments are becoming a standard operating procedure in data-
driven software companies [1, 11, 21, 22, 24]. In the simplest OCE,
two variants of a product are simultaneously exposed to two
randomly selected groups of users. Correctly executed
experiments can accurately measure the effect of changes to the
product on user behavior and key metrics, increase the quality of
a product, and align the organization around a unifying goal [12,
22]. These benefits, however, can only be achieved if experiments
are executed and analyzed correctly. For that, data scientists
meticulously examine OCEs to rule out any data quality issues
that could invalidate the results of their experiments [33].
Consider for example the following OCE that ran at Microsoft. A
product team at MSN increased the number of rotating cards on
the carousel from 12 to 16 (see Figure 1).

Figure 1. The MSN Carousel Experiment.

The expectation before the experiment was to see an increase in
the number of times that users click and engage with the carousel
[8, 29]. This experiment had enough statistical power to detect
very small changes, user interaction telemetry was correctly
logged and collected, and the platform on which the experiment
ran produced trustworthy analysis. Contrary to what the team
was hoping for based on the learnings from related experiments
that showed an increase in clicks, this experiment revealed a
significant decrease in engagement with the cards. Users seeing
more cards appeared to click less. Based on this result it seemed
like a bad idea to ship this change. What happened?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
KDD '19, August 4–8, 2019, Anchorage, AK, USA © 2019 Copyright is held by the
owner/author(s). Publication rights licensed to ACM. ACM 978-1-4503-6201-
6/19/08…$15.00 https://doi.org/10.1145/3292500.3330722

One clue for this outcome was a data quality warning firing in the
experimentation platform [28]. This warning indicated an
unexpected proportion of users in the experiment variants. In
particular, the treatment group which was exposed to the new 16
card carousel had fewer users in the analysis compared to what
was configured and expected based on the experiment set-up. The
deviations from the configured split were highly statistically
significant so unlikely to happen just due to chance. [8, 19]. This
difference is commonly known as a Sample Ratio Mismatch (SRM)
and prominently surfacing it to experimenters is critical to
prevent them from making inaccurate conclusions [17]. After
resolving the issue that was causing the SRM in experiment above
(see section 5.3 for details), it was found that the change was in
fact positive and significantly increased the engagement with the
product.

An SRM is one of the most useful indicators of many common and
severe data quality issues in Online Controlled Experiments [4, 5,
13, 18]. While testing whether an experiment exhibits an SRM is
straightforward, investigating the root cause can be very
challenging even for experienced analysts [9]. For example, while
the SRM warning in the experiment above indicated that
something went wrong with the experiment, it did not reveal why.
The ‘why’ was determined through a deep-dive analysis by
experienced analysts.

Experimentation trustworthiness issues are like cancer for a
product. If left ignored, these issues multiply quickly. SRM is a
good indicator of this problem. While some types of SRMs are
common (e.g. SRMs due to log processing are highlighted in [4,
35]), SRM conditions can happen anywhere in the experiment
lifecycle. Are the experiment variants correctly logging telemetry
[3]? Are experimenters or users interfering with the experiment?
These are just a few of the many possible scenarios that analysts
in our case study companies evaluate during their experiment
analysis process. As illustrated in section 4, searching for the root
cause can take weeks, sometimes even months. During this time,
the experiment owners are paralyzed as the decision on whether
the new feature is good or bad cannot be conclusively determined.

In this paper, we describe the common causes for an SRM, discuss
analysis steps to effectively diagnose each of them and share best
practices for preventing those that can be prevented. We base our
findings on case study research [31] at Booking.com, Microsoft,
Outreach.io, and Online Dialogue. Our main contribution is
threefold:

1. We provide a taxonomy of common SRM conditions.

2. We provide real example experiments that exhibited
SRM conditions for each of the taxonomy branches.

3. We share best practices and rules of thumb for detecting
and preventing SRM conditions.

While several examples of SRMs were discussed before in the
literature, to our knowledge this is the first large-scale systematic
study of common SRM types.

2. BACKGROUND
2.1 Online Controlled Experiments
Online Controlled Experiments, A/B test, or simply experiments
are widely used by data-driven companies to evaluate the impact
of software changes (e.g. new features) [11]. OCEs such as the one
that we introduced in the introduction are used for evaluating
changes on web sites [15, 16], mobile and desktop apps, gaming
consoles, social networks [34], operating systems [21] and other

platforms. In the simplest OCE, users are randomly assigned to
one of the two variants: control (A) or treatment (B). Usually
control is the existing system and treatment is the system with a
new feature added, say, feature X. User interactions with the
system are recorded and from that, metrics are computed. If the
experiment was designed and executed correctly, the only thing
consistently different between the two variants is the feature X.
External factors such as seasonality, impact of other feature
launches, moves by competition, etc. are distributed evenly
between control and treatment. Hence, any difference in metrics
between the two groups can be attributed to either the feature X
or random chance. The latter hypothesis is ruled out using
statistical tests such as a t-test [6]. This establishes a causal
relationship between the change made to the product and changes
in user behavior, which is the key reason for widespread use of
controlled experiments [11].

2.2 Online Controlled Experiment Steps
Every online controlled experiment consists of several steps that
need to be executed correctly for OCE to be valid. In our previous
research [14], we described the four key steps in the experiment
process: (1) Experiment Assignment – the initial stage where users
are split based on some unique identifier into groups and assigned
one of the product variations. (2) Experiment Execution – the stage
where users actually receive a variant based on the earlier
assignment (e.g. the correct configuration is downloaded to a
client), the variant is applied, and its usage is being logged. (3)
Experiment Log Processing – The stage where the telemetry
generated in the second stage is collected from the client (e.g.
uploaded from browser storage to some cloud storage) and
processed (e.g. joined with server logs). (4) Experiment Analysis –
The final stage where processed logs are analyzed by e.g. filtering
down to users impacted by the change. The characterization into
the aforementioned four stages can be derived also by studying
the architectural and infrastructural descriptions in papers on
experimentation published by other researchers (see [2, 33, 34]).
As we will explain later, there are distinct types of SRMs that arise
in each of the experiment steps presented in this section.

2.3 Data Quality
One of the most critical components of experimentation is data
quality. Practitioners at Microsoft [7, 13, 20], Booking.com [17],
LinkedIn [4] and other companies frequently report on
experiments that are at risk of being incorrectly analyzed due to
various issues with data. One of the most important symptoms of
data quality issues is the Sample Ratio Mismatch.

2.3.1 Sample Ratio Mismatch
Sample Ratio Mismatch, or simply ‘SRM’ is a data quality check
that indicates a significant difference between expected
proportions of users among experiment variants (e.g. configured
before the experiment started) and the actual proportions of users
observed at the end of the experiment. For example, if a 50/50 split
is expected between two experiment variants, the ratio between
the number of users exposed to each of the groups at the end of
the experiment is expected to be close to 1. While there are many
data quality issues that could decrease the validity and
significance of a controlled experiment, Sample Ratio Mismatch in
most cases completely invalidates experiment results. For
example, a ratio of 50.2/49.8 (821,588 versus 815,482 users)
diverges enough from an expected 50/50 ratio that the probability
that it happened by chance is less than 1 in 500k. To detect an
SRM, a chi-square test [30] can be used. If the test determines an

unlikely difference between the configured and observed
numbers, analysts must investigate the root cause.

2.3.2 Diagnosing Sample Ratio Mismatches
Several specific SRM root causes were extensively studied by
researchers and practitioners. For example, Chen et al. at
LinkedIn [4] exposed SRMs that happen during a triggered
analysis of an experiment and shared the lessons learned while
building a toolkit for diagnosing this type of SRM. They revealed
that about 10% of triggered analysis at LinkedIn have an SRM. A
triggered analysis is a type of experiment evaluation where only
the users that were affected by the change (those in the treatment
group that were exposed to the treatment) and the users that
would have been affected if they were exposed to it
(counterfactual - the users in the control group) are included in
the analysis process. Here, a wrong counterfactual or triggered
condition can cause an SRM. Next, Zhao et al. at Yahoo [35]
recognized SRM cases due to incorrect treatment assignment, lost
telemetry and issues in the design of the trial. In our prior research
at Microsoft [10], we shared example SRMs that happened in the
data processing (cooking) phase like the bot example presented in
section 5.3, as well as in the analysis phase due to wrong
triggering or filtering criteria.

Lessons learned from expanding experimentation to tens of
thousands of experiments yearly and to devices that span beyond
web sites and mobile applications taught us to seek for root causes
beyond the obvious suspects presented in the prior literature. For
example, SRMs can also be caused by ‘power users’ modifying
product telemetry, by experimenters that manipulate experiment
variants, by systems that deploy experiment variants, and so on.
This can be very challenging and costly, hence the need to study
the common SRM scenarios and provide a topology to improve
our capacity to identify root causes.

3. RESEARCH METHOD
To conduct this research, we collected and analyzed both
qualitative and quantitative data from four case companies -
Microsoft, Booking.com, Outreach.io, and Online Dialog. We used
a mixed method approach: a combination of qualitative and
quantitative methods is commonly used in case study research
[31] to study a problem from different angles and to synthesize
the available data [26]. The goal of our study was to learn what
the common SRM types are, how analysts diagnose them, and
whether some of the SRMs can be prevented. To learn about these,
we conducted four types of data collection and analysis efforts.
First, we reviewed recent and related literature for reported SRM
scenarios. Second, we collected and analyzed qualitative data by
examining internal documentation available to the authors of this
paper. Third, we conducted 14 interviews with experienced
analysts and developers working at the case companies based on
a set of semi-directive questions. The questionnaire itself is
available at [32]. Finally, we performed a quantitative analysis of
the historical data from previous controlled experiments that ran
at our case companies to get an insight on what common and
severe SRM cases really are. In total, the sample size of our
historical data is over 10000 OCEs.

4. SRM LEARNINGS AND INSIGHTS
In this section, we provide several learnings obtained during this
study. Note that this is not intended to be a comprehensive list,
but rather a short discussion confirming the importance of SRMs.

4.1 SRMs are a Common Data Quality Issue
Recent research contributions from large scale companies such as
LinkedIn [4] and Yahoo [35], as well as our own research [8]
confirm that SRMs are common at large scale experimentation.
During this study, and through quantitative analysis of
experiments conducted within the last year we identified that
approximately 6% of experiments at Microsoft exhibit an SRM. We
illustrate this in Figure 2 where we show the variation of the SRM
ratio among five products that run experiments at a large scale
(ordered in descending order based on the number of experiments
per product). Figure 2 reveals that this is an important problem to
address as it happens frequently – for example, a product running
ten thousand experiments in a year can expect to see at least one
SRM per day.

Figure 2. Ratio of OCEs with an SRM at Microsoft.

4.2 SRMs Indicate Invalid Analysis
Each of the experienced analysts confirmed that (1) they are
regularly exposed to SRMs and have to identify their root-causes,
and that (2) SRMs are a critical data quality issue that needs to be
investigated and resolved before a conclusive decision on the
result of an experiment can be reached. In particular, SRMs cause
a selection bias that invalidates any causal inference that could be
drawn from the experiment. If there is a selection bias in
treatment or control sample, then the observed metric movements
may be due to the selection bias and cannot be attributed to the
treatment effect. Below are two quotes from our interviews that
affirm these observations:

“I can recall hundreds of SRMs. We consider it one of the most
severe data quality issues we can detect.”

“I am working on resolving an SRM just now. The SRM is
critical. The analysis is completely untrustworthy.”

4.3 SRMs are Challenging to Root-Cause
Analysts at our case companies report a large variance for the time
that it takes to investigate an SRM, and many components of the
experiment in which SRMs could happen. The time to diagnose an
SRM can span from minutes to months, and SRMs can happen due
to issues with experiment design, the randomization process,
variant deployment, data logging, data collection, data cooking, as
well as due to data analysis conditions.

“Most of the time I spend a day or two to resolve an SRM. I
would look at the deep dive, look at the correct filter

condition etc. If it is a browser related SRM it may take me
a week, if it is not browser related it can take me months.”

The quotes above illustrate the high complexity and effort needed
to investigate an SRM throughout the experiment. We expand on
the individual components in section 5 in greater detail.

4.4 SRM Indicators make Diagnosis Effective
While a simple statistical test can be used to indicate whether
experiments has an SRM or not, it cannot provide enough clues to
experimenters on what the root cause may be. To make the
analysis efficient, analysts at our case companies employ
detectors that help them in the SRM investigation process. These
detectors span from specialized tools for investigating individual
segments of users or time slices of an experiment, as well as
specialized data quality metrics that can be used as leading
indicators of a root cause of an SRM. We illustrate this finding
with example quotes next:

“My most common tool is looking at the chart of assignments
to treatment and control over time, at a fairly low

granularity, e.g. 1 hour. The differences either in the beginning
or in the middle of the experiment indicate the time of SRM.”

“We have created a bunch of data quality metrics that can
guide us. For example, we have a metric called a proportion of

users with 0-page views. If we change the rate in which
people click on the home page you will see that the
proportion of users with 0-page views goes up.”

4.5 Some SRMs Can Be Prevented
While avoiding SRMs completely is not feasible in practice,
certain types of SRMs can be prevented. Simple SRMs caused by
e.g. redirects or filtered conditions can be prevented by educating
experimenters on designing their experiments more correctly. For
example, experiments can redirect both control and treatment
variations of a web page when a redirection in one of them is
needed, they can also select a broader triggering condition,
prevent humans from interfering with experiment variants, and
so on. We illustrate this with quotes below and provide a more
comprehensive list of preventive actions in section 5.

“Many SRMs were caused by a human intervening into the
experiment and unknowingly breaking it. This could be

prevented by introducing controls that show warnings or block
users from making changes to running experiments.”

4.6 SRMs Can Have a Positive Cause
While most SRMs occur due to issues in one or more of the
experiment stages, some SRM can be an indicator of positive
treatment behavior. For example, when the load speed of the
treatment variant is improved, the likelihood of the load event
being logged increases. Similarly, if the treatment variant
increases engagement of the users with the product (for example,
users are forced to click on two items as opposed to only one in
control) – the likelihood of losing both events during telemetry
collection is smaller compared to only losing the single event.

“If the treatment is getting us to recover additional users in
the logs it almost always means that it made some performance
improvements to the website. So, these are wins!”

The findings and example data in this section are only a small
subset of the knowledge that we constructed about SRMs during
this study. In the next section, we provide an overview of the
common SRM types we inferred from this data.

5. FIVE COMMON TYPES OF SRMs
In this section, we provide an overview of the common SRM types
and a taxonomy revealing the different categories of SRMs based
on the stage of experiment where they appear. For each of the
SRM types, we first provide an example experiment that resulted

in a puzzling outcome. Next, we explain why the experiment
exhibited an SRM and provide a general understanding of the
scenario. Finally, we discuss how to detect and prevent the SRM
scenario where applicable. We summarize all the common causes
with a taxonomy on Figure 5 in Section 5.6.

5.1 Experiment Assignment SRMs
Experiment. For every A/B test, it is a best practice to compute
results for the pre-period before the test started and confirm that
a random split of users into two groups does not cause a large
difference in key metrics. If it does, then the same metric in the
A/B test period would carry over some of that bias.

During an experiment on MSN.com webservice, the team
observed an SRM in one such A/A test. How can an A/A test have
an SRM?

Outcome. Further investigation revealed a bug in the experiment
assignment service. The experiment assignment service used a
hash function to randomize users into one thousand buckets, each
bucket representing 0.1 percent of users. For each experiment, the
experiment owners define how much user traffic they want to
expose each variant in the experiment to, which translates into a
specific number of buckets to assign to control and treatment. In
this case, there was a bug in the experiment assignment service
where the control variant was assigned one less bucket than the
required number of buckets. A 50/50 test would incorrectly be
setup as a 49.9/50 split, which is not necessarily an obvious issue.

Generalization. Experiment assignment service is one of the
fundamental components of an experimentation platform [21].
There are three main requirements for this component. First, end
users must be equally likely to see each variant of an experiment
(assuming a 50-50 split). Second, repeat assignments of a single
end user must be consistent i.e. the user should be assigned to the
same variant on each successive visit to the product. Third, when
multiple experiments are run, there must be no correlation
between experiments. An end user’s assignment to a variant in
one experiment must not have effect on the probability of being
assigned to a variant in any other experiment.

Detection. Violation of any requirement can cause an SRM.
Problems in the experiment assignment service would usually
cause multiple experiments to have an SRM. In our example
above, the first condition was violated. Unstable user ids can cause
violation of the second requirement and may lead to an SRM in
certain situations. The third requirement can be violated in more
subtle ways. For example, it is important that an experiment
assignment is not correlated with the experiments that are
running alongside the experiment, or with the experiments that
ran before. If a treatment variant of an experiment is particularly
good (or bad) then it may affect the re-visit rate of users during
the time the experiment is running and may have a carryover effect
even after the experiment stops. If this experiment’s assignment
is correlated with another experiment’s assignment, then it may
lead to an SRM.

Prevention. In many cases experiment variant assignment is
done by hashing the user ID. With different seeds, hashing libraries
like MD5 lead to hashing functions that are independent of each
other. If the experiment assignment service is picking a seed at
random from a list of seeds, it is important to make sure that there
is a very large number of seeds to ensure no two experiment
assignments are correlated. For 365 different seeds, you only need
around 23 experiments to have a 50% chance of at least one pair
of experiments sharing a seed. This is also referred to as birthday

paradox [27]. Further it is important to change the list of seeds
used over time, or else correlation in user behavior can build up
for users who are assigned to the same bucket by a hashing
function. In some cases, it is essential to make sure that
experiment assignment of an experiment is not independent of
another experiment but rather exclusive of another experiment.
When variants in two different experiments interact with each
other, randomizing these experiments independently may cause
an SRM. For instance, if the application crashes when a user is in
treatment for two different experiments together and these two
experiments are randomized independently of each other, then it
may lead to an SRM due to telemetry loss. To avoid an SRM in this
case, no user should be exposed to both experiments at the same
time i.e. experiment assignments are exclusive of each other. This
can be achieved by using a separate population for each
experiment or by running experiments in different time frames.

5.2 Experiment Execution SRMs
Experiment. The team at Skype recently ran an OCE aimed at
improving audio quality of calls. Varying network conditions are
the largest driver of poor audio quality experience in voice over
IP (VoIP) calling applications such as Skype. Dynamically
adjusting buffering parameters can help improve audio quality.
However, there are multiple buffering parameters, and their
optimal setting may depend on a variety of network
characteristics. The treatment variant used a context-based
machine learning (ML) model to set the buffering behavior of the
received audio stream. The control consisted of a fixed parameter
used for all call conditions. The ML algorithm used an online
system to learn the buffering parameters across contexts by
trading off playout delay and distortion.

Outcome. The team anticipated an improvement in audio metrics
by using a context-aware parameter value compared to a fixed
setting. Instead, they found that the experiment resulted in a
significant increase in audio distortion and playback delay. The
randomization unit of this experiment was a session (call). The
experiment analysis system collected 30% less sessions compared
to the control group, triggering an SRM alert.

Explanation. Upon investigation it was revealed that the root
cause of the Skype experiment was an asynchronous refresh of
the experimentation configuration in the middle of a session. The
findings were based purely on systems metadata. While the
updated configuration was not honored in the middle of the
session (by design), the in-memory variable tracking the variant
ID was getting updated due to a bug. As a result, the
experimentation log was recording and reporting the incorrect
variant ID at the end of the session. Around 30% of the logs
reported as if a treatment never started as the treatment. After
detecting this issue, the team could evaluate the experiment for a
subset of the population – the sessions that did not encounter a
configuration refresh in the middle of a session.

Generalization. The root cause above can be classified into a
category of SRM scenarios that we label – Experiment Execution
SRMs. This scenario consists of three main categories: (1) SRM’s
due to Variant delivery behavior (e.g. starting variants at different
times), (2) SRM’s due to Variant execution behavior (e.g. due to
delayed filter execution which targets populations based on
complex features that are only known during the experiment
execution), and (3) SRM(s) due to Telemetry generation behavior.
For the latter, there are several root-causes. First, experiments not
redirecting all variants of a web page may have an SRM as some
redirects may fail. Second, if new telemetry is added to the product,

the likelihood of receiving at least one event back from one-time
users increases, which typically results in observing more users in
that variant. Third, if the treatment degrades performance of a
product, an SRM can happen as users have more time to exit the
product before the logs are generated. In contrast, improved
product performance can give telemetry generation component
more time to generate and send logs, frequently resulting in
observing more users in the faster variant.

Another common SRM point in this stage is is with first run
occurrences. SRMs can happen in first run experiments whenever
one variant increases the engagement of users with the product
(e.g. a variant has a bug that only engaged users discover), if the
treatment changes the order in which its components are loaded
(e.g. users exit the product before the telemetry is generated, or if
a variant has a bug and crashes (see OneNote experiment in [12]).
Logs from a faster or crashing variant will be delayed or, worse,
may never be generated and sent for processing. A similar
observation can be seen with experiments that make users more
engaged with the product (e.g. they make more clicks). In such
experiments, the likelihood of transmitting at least one log is
higher, reducing telemetry loss rate and potentially resulting in
an SRM with more one-time users.

Furthermore, to process and report on the results of an experiment
the system needs to collect telemetry from all places where the
experiment was executed. Since the experiment may be executed
on several physical devices, data may be lost in transport to a
central processing pipeline. This is especially likely to occur in
cases where telemetry is generated on third party devices, such as
cell phones or in browsers. For example, threads may be closed or
paused by the client operating system to save battery power or
network may be unreliable or even entirely disconnected during
experiment execution. There are many ways in which telemetry
may go missing between a client and the experiment system.
When a treatment affects the rate at which data goes missing an
SRM may be the result. For example, if the treatment is a more
promising compressing algorithm that uses less bandwidth to
achieve the same result, the probability of telemetry loss in the
collection may decrease as a side effect of the treatment.

Detection. Finding the root cause of an SRM in the Experiment
Execution stage is far from trivial. One way to diagnose the exact
root cause is to have data quality metrics measuring telemetry
loss, product performance metrics measuring the speed and
reliability of actions, and engagement metrics measuring users’
activity. On Figure 3 below, we provide an example alert from
Booking.com illustrating one of the data quality metrics (counting
the number of warnings) and a warning revealing that the
proportion of users between the variants is not as expected.

Figure 3. Alert detecting telemetry loss at Booking [23].

For more details on diagnosing SRMs in this stage see [13]. Note
however, that sometimes-advanced approaches may be needed to
identify the exact root-cause. For example, in the Skype audio
experiment, the team built a classifier to detect when the
algorithm’s output was invalidated (class=1) by the telemetry
system and when it was validated (class=0). The algorithm was a
random forest model and looked at the most discriminative

features. By using this classifier, they found that the top features
were all related to the session duration. The longer the session,
the more susceptible it is to configuration refresh. This finding
gave the necessary hint to trace it back to the experimentation
configuration refresh. In general, the team finds this approach of
using a feature difference between the two classes to be quite
helpful in finding clues regarding the source of the SRM when the
cause is not immediately obvious.

Prevention. Systemic SRMs (e.g. like the one with Skype
experiment above) can be prevented by tracking the telemetry
reliability and evaluating any bias between control and treatment
variants [13] . The telemetry loss metrics will not help prevent
experimental design SRMs – these SRMs should be prevented
during the experimental design phase and it requires a careful
understanding and evaluation of whether the variant would
change the underlying population between control and treatment.
Our overall recommendation to prevent some of these SRMs is to
introduce first telemetry signals, which should fire before any
other code in the product executes. This helps register user’s
presence in a more reliable way. First signal, however, should be
used in conjunction with other data quality metrics to avoid
making any biased conclusion in situations with data loss.

5.3 Experiment Log Processing SRMs
Experiment. To explain this scenario, we return to the
experiment increasing the number of rotating cards on the
carousel from 12 to 16 described in the introduction of this paper.

As explained earlier, an increase in the number of times that users
click and engage with the carousel was expected, but the
controlled experiment revealed a significant decrease in
engagement with the cards instead. Crucially, the treatment group
which was exposed to the new 16 card carousel had less users in
the analysis compared to what was configured and expected
during experiment setup, triggering an SRM warning. How did
this happen?

Outcome. A deep-dive analysis by experienced analysts revealed
that during the data processing phase, the most engaged users in
the treatment group were being classified as computer bots and
removed from the experiment analysis by an algorithm that scans
for bot activity. Some users in the treatment engaged with the
carousel cards so much that they crossed the engagement
threshold used in the bot detection algorithm. After accounting
for the bot classification results, the results were flipped and the
correct decision to ship the feature was made.

Generalization. We classify SRMs caused by problems during
log processing, such as this example, into a third category dubbed
Experiment Log Processing SRMs. In this stage, most SRMs
happen due to issues caused by the way the data is processed, or
“cooked”: it is transformed from raw telemetry into summary
statistics on various levels (session level, user level). For that, the
data is aggregated, joined, filtered or summarized. Automation of
that process might fail, for instance leaving blanks in the data that
goes missing. Removal of bots during the cooking phase based on
post-treatment observations can lead to SRM when treatment
affects the bot detection system such as in the example described
above. Other examples of SRM caused during this phase include
incorrect joins resulting in silently dropping data points from the
analysis. Some of these issues could be considered simply bugs or
bad experiment design, but often their impact is magnified when
they result in SRM depending on the nature of the treatment.

Many of the problems that fall into Log Processing can be
considered as “missing data” problems. The impact of the missing
data on the analysis depends whether the data is missing because
of a transient issue happening after data collection, and thus by
repeating the cooking process maybe the data can be recovered. If
data is missing because it was not collected at all, it is often
impossible to resolve the issue without repeating the entire
experiment. Conversely, if data is missing because of bad joins,
filtering, or due to a delay in telemetry transmission, then it may
be possible to repeat the cooking process after the problem has
been fixed. However, this will depend on system architecture, as
it may not be possible to repeat the cooking process at all in
stream processing systems where the necessary raw data is not
stored long enough.

Detection. One method for detecting issues related to collection
and cooking is described by Kaufman et al. [15]. If there are two
or more distinct data collection and cooking pipelines it is very
unlikely that telemetry collection or telemetry cooking issues are
identically replicated in all pipelines. Simply comparing the
summary statistics resulting from different pipelines will help
identify when SRM is likely caused. Further inspection of different
parts of the pipelines can help hunt down the exact root cause.
Another good practice for detecting SRMs in Log Processing is to
implement monitoring of the size and types of log records that get
excluded from the analysis (e.g. by monitoring ‘users’ filtered out
as bots).

Prevention. Data collection issues can never be avoided entirely.
As they are especially prevalent when dealing with third party
systems one potential solution is to ensure that users are not
exposed to treatment before they are triggered into the
experiment on a local system. For example, by ensuring that
mobile devices require explicit confirmation from the experiment
platform that a user has been enrolled into the experiment (see
First Signal in 5.2 prevention), or by automatically triggering users
into the experiment when experiment configuration is sent to
their device, even when it is not yet known whether they will be
exposed at all.

Many problems that occur during cooking could be described as
post-treatment selection effects. Filtering out bots based on data
generated after treatment exposure can be problematic when
treatment affects signals used by the bot detection system. To
prevent these kinds of issues, the cooking process should ensure
that no post-treatment data is used for filtering purpose. For
example, at Booking.com, data processing pipelines determine
user attributes, such as their bot detection status, at first exposure
to the experiment and disallow changes after this point (for that
experiment). This way, post-treatment selection issues are
entirely avoided.

5.4 Experiment Analysis SRMs
Experiment. Microsoft Teams recently ran an experiment testing
whether skipping a First-Run Experience (FRE) page affected user
activity. An FRE is the page that users see when they open the
product for the first time. Triggered analysis was applied for the
users who saw FRE based on the events fired when the control
users saw the FRE page, or the treatment users were expected to
see it.

Outcome. There were more users in treatment variation in the
triggered scorecard, while no SRM appeared in the non-triggered
(aka standard) analysis that includes all users of the product.

Explanation. To save network communication, the client sends
out the events in batches. The old design took longer to load,
which lead users in control to quit earlier. As a result, the
probability that the data logs that indicate the visibility of the old
design being lost was higher. The main finding was that the
trigger condition can’t cover all the eligible users for the analysis.

Generalization. The SRM issue above falls into the category of
Experiment Analysis SRMs. In this stage, telemetry filtering is the
main root cause, which frequently happens because of incorrect
configuration of analysis or incorrect set up of counterfactual
logging. Incorrect triggering or filtering condition is another
common case. Another example is a situation that a feature is
displayed to users in treatment only, but the counterfactual
logging for users in control is missing, making it hard to drill-
down.

Detection. If no SRMs happen with non-triggering or non-
filtering analysis, it indicates that the root cause lies with the
triggering or filtering analysis process. For example, to solve the
problem in the Microsoft Teams experiment presented earlier, the
team needed to configure the analysis based on the events with a
relaxed condition that happened a few steps before the change
with the new design. They determined users’ eligibility in the
triggered analysis to see the FRE page based on events logged
immediately after the users log in. Zhao et al. [35] introduced a
method of calculating the cumulative sample size from the very
beginning of experiment to diagnose whether starting time point
lead to SRM. Chen et al. [4] mentioned that computing SRM ratios
for first time users and return users also helped identify the effect
of retention changes. Missing data from a variant in the filtering
analysis indicates the condition is invalid or counterfactual
logging is missing.

Prevention. To prevent Telemetry Filtering SRMs, we
recommend starting the analysis from the beginning of the
experiment. If it is hard to balance sample size with the triggering
or filtering condition, try relaxing the condition to include a wider
range of users. For example, generate analysis for users who have
seen a view page instead of users who have taken actions on the
page, when the later condition can cause bias. Ideally, implement
a framework to deal with common counterfactual logging
scenarios, such as apply the same mechanism for counterfactual
logging when display new view pages or new elements on a page.

5.5 Experiment Interference SRMs
Experiment. In one of the experiments at Microsoft Store
Homepage and Microsoft Homepage, the team evaluated the
impact of the page redesign (see Figure 4 for example screenshots
of two variants). The experiment had an SRM despite being
designed correctly, the variants logging the correct data, and all
the other root causes were dismissed. For some reason, however,
there were more users in the control variation than expected.

Outcome. After a deep-dive analysis, the team learned about a
human interference with the experiment variant. Some users were
forced into one of the variants by a search engine campaign which
had a misconfigured URL pointing directly to the variant (as

opposed to the product). The solution to resolve the particular
SRM was simple – to get an insight into the results, the team
needed to segment the affected users out of the analysis and
provide experiment results for the users that were not forcefully
assigned. In most cases, however, rerunning the experiment will
be necessary.

Generalization: The root cause above classifies into a category
of SRM scenarios that we label – Experiment Interference SRMs.
This scenario consists of two categories: (1) SRMs due to Variant
Interference - these happen due to an involvement of an
experimenter or the actual end user in the experimentation
process. The example above was an example of an experimenter
interaction in placing users from a search engine campaign into
one of the experiment variants. Many products have hidden way
to "force" a specific variant experience using config strings or URL
parameters for debugging purposes which, if not used correctly,
can cause an SRM. Another example experienced by our case
companies is a situation where an experimenter would pause one
of the variants for some time during the experiment to perform a
change, or a situation where only some of the variants are
ramped-up.

Figure 4. Microsoft Store and Homepage Experiment.

The second category are (2) SRMs due to telemetry interference –
These are cases where users of the product actively interfere with
the product variation in a way that results in an SRM. For example,
in one experiment at one of our case companies, users actively
manipulated the product telemetry by submitting an injection
attack through one of the telemetry fields. This caused a severe
SRM in the variant that the user was conducting the attack.

Detection. To detect SRM’s due to experimenter’s involvement,
we recommend establishing monitoring of activities with the
platform and alerting whenever a variant is changed during
experiment execution. To detect forceful assignment to
experiment variants, monitor the assignment of users over time
and alert the experimenter on large and significant differences.

Prevention. This type of SRMs can effectively be prevented by
notifying the experimenters about the consequences of their
actions. On Figure 5, we provide an example alert from an
experimentation platform used at Outreach.io that notifies the
experimenter about the consequences of stopping a running
variant during an experiment.

To prevent Interference SRMs we recommend preventing
experimenters from using direct assignments to experiment
variants outside of certain network (e.g. only allow team members
to be directly assigned a variant), alerts in the experimentation
platform that notify experimenters about the consequences of
their actions, and to monitor the telemetry that is being collected
for unusual values (blanks, injection strings, etc.).

Figure 5. Taxonomy of common SRM types and root-causes.

5.6 SRM Taxonomy
We summarize the common SRM causes that we discussed so far
on Figure 6. In total, we recognize 25 distinct causes of SRMs and
categorize them based on the stage of the experiment in which
they appear. We colored the root-causes that likely indicate a
systematic widespread impact (e.g. impacting multiple
experiments) with *. In the next section, we discuss the rules of
thumb for classifying the SRM that you experience and
determining the root cause.

6. Rules of Thumb for SRM Investigations
In the previous section, we provided the SRM taxonomy and
example experiments that exhibited an SRM. With this
contribution, practitioners can increase their awareness of
common SRMs and learn about preventive measures employed by
our case companies. In this section, we briefly discuss ten rules of
thumb for a quick diagnosis and categorization of most SRMs.
This will help practitioners narrow down the root cause and
categorize the SRM.

1. Examine scorecards: If SRM occurs in a subsample of users
(e.g. in a triggered/filtered scorecard) and there is no SRM in
the standard scorecard with all users in the experiment, it is
likely that the trigger/filter condition is wrong in experiment
analysis. Start by relaxing the filter to capture a wider
audience and examine at what point the SRM problem occurs.

2. Examine user segments: If the SRM occurs in only one user
segment, it is very likely that the cause of the SRM is localized
to that segment. For instance, if the treatment is relying on
some advanced browser capabilities like 256-bit encryption
[25], the segment with older version of the browser might
have an SRM.

3. Examine time segments: If the evidence for SRM is
strongest on day 1 of the experiment, and you do not observe
the SRM after a longer time duration, the SRM is likely due to
time related factors like caching during experiment execution,
or delayed start of a variant in the experiment.

4. Analyze performance metrics: If there is a large
degradation in key performance metrics like time to load or
crashes in the scorecard that has an SRM, then it is likely that

the sign of this difference is real and is causing the SRM. For
instance if the treatment increases page load time, then you
may not get telemetry from some users who get the worst
page load time, but you will still see regression when
comparing treatment with control for those users for whom
you do have telemetry.

5. Analyze engagement metrics: If average engagement per
user is higher in treatment compared to control, then it is
likely that the root cause of the SRM is affecting less engaged
users more, and vice-versa. For instance, in the case of Skype
SRM example the root cause was due to a system bug
impacting sessions with longer (more engaged) duration.

6. Count frequency of SRMs: If many disparate experiments
have an SRM, then it is likely that the root cause of the SRM
is a systemic issue due to one or more factors from the
taxonomy with a systematic widespread impact (marked *).

7. Examine AA experiment: If an A/A experiment has an SRM
then it is likely that one of the widespread factors is the root
cause of the SRM, or the experiment is not actually an AA –
for instance if you add extra telemetry in one of the variants
then it is not an A/A as that variant might recover more users.

8. Examine severity: If you observe a very large or very small
sample ratio, then the root cause is likely to be affecting most
users in the control or treatment, respectively. For example,
if there are no users in one variation, then it is likely a
telemetry issue where control variant or a trigger condition in
control is not getting logged properly.

9. Examine downstream: If your pipeline allows introspection
of data at different collection and aggregation stages (e.g. in
steps before the final scorecard), then comparing results at
different stages may provide clues as to where the SRM
originates.

10. Examine across pipelines: If your experimentation system
has two data pipelines, then compare the results of both
pipelines. See [15] for more details. Also, examine debugging
logs containing records that could not be merged in the
pipelines. Differences in these point to log processing related
SRMs.

7. CONCLUSION
The biggest driver of incorrect conclusions when comparing two
datasets is bias. SRMs are a strong indicator of such bias, are
common in large scale experimentation, and are difficult to
diagnose and resolve. They consume analyst time, attribute to
flawed conclusions, reduce confidence in experimentation, and
impede the progress of product development. In this paper, based
on our experience of running OCEs in four different software
companies in over 25 products used by hundreds of millions of
users, we derived a taxonomy for the types of SRMs and general
rules of thumb for diagnosing their root cause. We hope that the
lessons learned and practical tips for diagnosing each of them will
raise awareness of this important topic. This should prevent some
of the SRMs from happening as companies mature their
experimentation practices as well as speed-up their resolution.

ACKNOWLEDGMENT
The authors of this paper would like to thank the interviewees and
all the case companies that participated in this study. We would
also like to acknowledge everyone that reviewed this paper and
provided guidance and feedback.

REFERENCES
[1] Auer, F. and Felderer, M. 2018. Current State of Continuous Experimentation: A

Systematic Mapping Study. Proceedings of the 2018 44rd Euromicro Conference on
Software Engineering and Advanced Applications (SEAA) (Prague, Czechia., 2018).

[2] Bakshy, E., Eckles, D. and Bernstein, M.S. 2014. Designing and deploying online
field experiments. Proceedings of the 23rd international conference on World wide
web - WWW ’14 (New York, New York, USA, 2014), 283–292.

[3] Barik, T., Deline, R., Drucker, S. and Fisher, D. 2016. The Bones of the System: A
Case Study of Logging and Telemetry at Microsoft. (2016).

[4] Chen, N., Liu, M. and Xu, Y. 2018. Automatic Detection and Diagnosis of Biased
Online Experiments. arXiv preprint arXiv:1808.00114. (2018).

[5] Deng, A., Lu, J. and Litz, J. 2017. Trustworthy Analysis of Online A/B Tests.
Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining - WSDM ’17 (New York, New York, USA, 2017), 641–649.

[6] Devore, J.L. and Berk, K.N. 2012. Modern Mathematical Statistics with
Applications.

[7] Dmitriev, P., Frasca, B., Gupta, S., Kohavi, R. and Vaz, G. 2016. Pitfalls of long-
term online controlled experiments. 2016 IEEE International Conference on Big
Data (Big Data) (Washington, DC, USA, Dec. 2016), 1367–1376.

[8] Dmitriev, P., Gupta, S., Dong Woo, K. and Vaz, G. 2017. A Dirty Dozen: Twelve
Common Metric Interpretation Pitfalls in Online Controlled Experiments.
Proceedings of the 23rd ACM SIGKDD international conference on Knowledge
discovery and data mining - KDD ’17 (Halifax, Nova Scotia, Canada, 2017).

[9] Fabijan, A., Dmitriev, P., Holmstrom Olsson, H. and Bosch, J. 2018. Effective
Online Controlled Experiment Analysis at Large Scale. 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA) (Prague,
Czechia., Aug. 2018), 64–67.

[10] Fabijan, A., Dmitriev, P., McFarland, C., Vermeer, L., Holmström Olsson, H. and
Bosch, J. 2018. Experimentation growth: Evolving trustworthy A/B testing
capabilities in online software companies. Journal of Software: Evolution and
Process. (Nov. 2018), e2113. DOI:https://doi.org/10.1002/smr.2113.

[11] Fabijan, A., Dmitriev, P., Olsson, H.H. and Bosch, J. 2018. Online Controlled
Experimentation at Scale: An Empirical Survey on the Current State of A/B
Testing. Proceedings of the 2018 44rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA) (Prague, Czechia., 2018).

[12] Fabijan, A., Dmitriev, P., Olsson, H.H. and Bosch, J. 2017. The Benefits of
Controlled Experimentation at Scale. Proceedings of the 2017 43rd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA) (Vienna,
Austria, Aug. 2017), 18–26.

[13] Gupchup, J., Hosseinkashi, Y., Dmitriev, P., Schneider, D., Cutler, R., Jefremov,
A. and Ellis, M. 2018. Trustworthy Experimentation Under Telemetry Loss. to
appear in: Proceedings of the 27th ACM International on Conference on Information

and Knowledge Management - CIKM ’18 (Lingotto, Turin, 2018).

[14] Gupta, S., Ulanova, L., Bhardwaj, S., Dmitriev, P., Raff, P. and Fabijan, A. 2018.
The Anatomy of a Large-Scale Experimentation Platform. 2018 IEEE
International Conference on Software Architecture (ICSA) (Seattle, USA, Apr.
2018), 1–109.

[15] Kaufman, R.L., Pitchforth, J. and Vermeer, L. 2017. Democratizing online
controlled experiments at Booking. com. arXiv preprint arXiv:1710.08217. (2017),
1–7.

[16] Kevic, K., Murphy, B., Williams, L. and Beckmann, J. 2017. Characterizing
Experimentation in Continuous Deployment: A Case Study on Bing. 2017
IEEE/ACM 39th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP) (May 2017), 123–132.

[17] Kluck, T. and Vermeer, L. 2017. Leaky Abstraction In Online Experimentation
Platforms: A Conceptual Framework To Categorize Common Challenges. (Oct.
2017).

[18] Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y. and Pohlmann, N. 2013. Online
controlled experiments at large scale. Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining - KDD ’13
(Chicago, Illinois, USA, 2013), 1168.

[19] Kohavi, R., Deng, A., Longbotham, R. and Xu, Y. 2014. Seven rules of thumb for
web site experimenters. Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD ’14 (New York, New
York, USA, 2014), 1857–1866.

[20] Kohavi, R. and Longbotham, R. 2017. Online Controlled Experiments and A/B
Testing. Encyclopedia of Machine Learning and Data Mining. C. Sammut and G.I.
Webb, eds. Springer US. 922–929.

[21] Kohavi, R., Longbotham, R., Sommerfield, D. and Henne, R.M. 2009. Controlled
experiments on the web: survey and practical guide. Data Mining and Knowledge
Discovery. 18, 1 (Feb. 2009), 140–181. DOI:https://doi.org/10.1007/s10618-008-
0114-1.

[22] Kohavi, R. and Thomke, S. 2017. The Surprising Power of Online Experiments.
Harvard Business Review.

[23] Leaky Abstractions: 2018. https://booking.ai/leaky-abstractions-in-online-
experimentation-platforms-ae4cf05013f9.

[24] Lindgren, E. and Münch, J. 2015. Software development as an experiment
system: A qualitative survey on the state of the practice. Lecture Notes in Business
Information Processing (Cham, May 2015), 117–128.

[25] List of browsers that support 128-bit and 256-bit encryption: .

[26] Mayring, P. 2002. Qualitative content analysis - research instrument or mode of
interpretation. The Role of the Researcher in Qualitative Psychology. 139–148.

[27] Mckinney, E.H. 1966. Generalized Birthday Problem. The American
Mathematical Monthly. 73, 4 (Apr. 1966), 385.
DOI:https://doi.org/10.2307/2315408.

[28] Microsoft Experimentation Platform: http://www.exp-platform.com.

[29] MIT Code: 2016. http://bit.ly/Code2016Kohavi.

[30] Pearson, K. 1900. X. On the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that it can be
reasonably supposed to have arisen from random sampling. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 50, 302 (Jul.
1900), 157–175. DOI:https://doi.org/10.1080/14786440009463897.

[31] Runeson, P. and Höst, M. 2008. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering. 14, 2
(2008), 131–164. DOI:https://doi.org/10.1007/s10664-008-9102-8.

[32] SRM Interview Guide: 2019. https://www.dropbox.com/s/h0291u1fcqg0eze/SRM
Interview Guide.pdf?dl=0.

[33] Tang, D., Agarwal, A., Brien, D.O., Meyer, M., O’Brien, D. and Meyer, M. 2010.
Overlapping experiment infrastructure. Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining - KDD ’10 (New
York, New York, USA, 2010), 17.

[34] Xu, Y., Chen, N., Fernandez, A., Sinno, O. and Bhasin, A. 2015. From
Infrastructure to Culture. Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining - KDD ’15 (New York, New
York, USA, 2015), 2227–2236.

[35] Zhao, Z., Chen, M., Matheson, D. and Stone, M. 2016. Online Experimentation
Diagnosis and Troubleshooting Beyond AA Validation. 2016 IEEE International
Conference on Data Science and Advanced Analytics (DSAA) (Oct. 2016), 498–507.

